
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DT~S JUL 27 193A L

THESIS

STRUCTURED VERSUS OBJECT-ORIENTED DESIGN
0 •OF A NAVY

BATTLE GROUP LOGISTICS SIMULATION SYSTEM

by

Bernadette Clemente Brooks

March 1993

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

93-16825

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

' NAME OF IETFORN'6G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

bmputer Mc ence Mept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Structured Versus Object-Oriented Design of a Navy Battle Gioup Logistics Simulation System

12. PERSONAL AUTHOR(S) Bernadette Clemente Brooks

13aJYPE ORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
aster s Wes sFROM _19g2 TO: 03/93 1993, March 25 251

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not retlect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-G3ROUP Structured Programming, Object-Oriented Programming, Logistics Support
Sy stems

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis deals with the design of a Navy battle group logistics simulation system to support battle group logistics
coordinators. BGLCSS 2.0, the Battle Group Logistics Coordinator Support System, was designed and developed
using a structured programming paradigm. A subset of BGLCSS 2.0 was then designed using an object-oriented
programming paradigm. We present the components of each of these designs in C and C++.
Our approach was to compare and critique these two designs with respect to the extent to which their respective
programming paradigms meet the software goals of software reusability and ease of program extension and
maintenance. We designed the graphical user interface using TAE Plus which generated code in both C and C++,
providing an easy way to transport the interface from a C implementation to a C++ implementation in the future. The
designs of this real world Navy tactical decision aid clearly demonstrate the problems associated with using structured
programming paradigm and the benefits of using an object-oriented programming paradigm, especially for large
systems.

20. DISTRI"BUTION/AVAILABILITY OP ABST RACT1 21 ABSTRA•T -SECURITY CLASSIFICA'TION

[3UNCLASSIFIED/UNLIMITED [SAME AS RPTý Q DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

C. Thomas Wu 1(408) 646-3391 1 CS/Wu
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

Structured Versus Object-Oriented Design
of a Navy

Battle Group Logistics Simulation System

by
Bernadette Clemente Brooks

B. S., Psychology, Georgetown University, 1980
M.A., International Studies, The Johns Hopkins University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1993

Author:

Bernadette Clemente Brooks

Approved By:

C. Thomas &, Thesis Advis~or

Roger Stemp, 1v od Reader

CD ay _~~e, ýhairman,Departmen'ýputer Science

ABSTRACT
This thesis deals with the design of a Navy battle group logistics simulation system to

support battle group logistics coordinators. BGLCSS 2.0, the Battle Group Logistics

Coordinator Support System, was designed and developed using a structured programming

paradigm. A subset of BGLCSS 2.0 was then designed using an object-oriented

programming paradigm. We present the components of each of these designs in C and

C++.

Our approach was to compare and critique these two designs with respect to the extent

to which their respective programming paradigms meet the software goals of software

reusability and ease of program extension and maintenance. We designed the graphical user

interface using TAE Plus which generated code in both C and C++. This mechanism

provides an easy way to transport the interface from a C implementation to a C++

implementation in the future.

The design of this real world Navy tactical decision aid clearly demonstrate the

problems associated with using structured programming paradigm and the benefits of using

an object-oriented programming paradigm, especially for large systems.

Acce.on For
-

- NTIs R&Dlc
lAb

U c

L) ':21 /. .: _ _. .. _

L ".......

NI
T

iii

J

[D
-J,

83 Y

S... . i i II

I
i

TABLE OF CONTENTS

1. IN T R O D U C T IO N .. 1

A. BACKGROUND OF BGLCSS .. 1

B. OBJECTIVES ... 3

C . SC O PE 3
D. ORGANIZATION .. 4

II. BACKGROUND OF THE PROGRAMMING PARADIGMS 5

A. GENERAL .. 5
B. GOALS OF SOFTWARE DEVELOPMENT .. 6

C. STRUCTURED PROGRAMMING PARADIGM 7

1. Separate Code and Data .. 7
2. Built-In Data Types ... 8

3. Top-Down Functional Decomposition and Function-Based Design ... 9
4. Distributed Functionality ... 10

5. Limited Code Reuse ... II
D. OBJECT-ORIENTED PROGRAMMING PARADIGM 11

1. Data Hiding and Data Abstraction ... 13

a. C lass 14
b. Member Functions .. 14
c. C++ Constructors and Destructors .. 14

2. Inheritance and Class Relationships .. 15

3. Polymorphism ... 16

E. COMPARISON OF THE PARADIGMS ... 18

I1l. BGLCSS 2.0 GRAPHICAL USER INTERFACE DESIGN 20
A. TAE PLUS OVERVIEW .. 20

B. TAE PLUS WORKBENCH ... 22

C. BGLCSS 2.0 GUI DESIGN ... 27

IV. BGLCSS 2.0 STRUCTURED DESIGN .. 33

A. GENERAL .. 33
B. PROGRAM SPECIFICATIONS ... 34

C. SYMBOLIC CONSTANTS ... 34

D. DATA STRUCTURES ... 35

I. Battle Groups ... 35

2. S hips 38

iv

3. E vents .. . 4 1

E. BGLCSS 2.0 LIBRARY DESIGN .. 46

F. PROGRAM INTEGRATION .. 49

G. STRUCTURED DESIGN PROBLEMS .. 50

V. BGLCSS 2.0 OBJECT-OPJENTED DESIGN .. 52

A . C L A SSE S .. 52

I. Battle G roup C lass .. 54

2. Ship C lass H ierarchy ... 56

3. Logistics Events Class Hierarchy .. 58

B. SYMBOLIC CONSTANTS ... 64

C. OBJECT-ORIENTED DESIGN BENEFITS ... 64

VI. CONCLUSION AND RECOMMENDATIONS .. 66

APPENDIX A. BGLCSS 2.0 GRAPHICAL USER INTERFACE PANELS 67

APPENDIX B. BGLCSS 2.0 C PROGRAM LISTING .. 92

APPENDIX C. BGLCSS 2.0 C++ PROGRAM LISTING ... 225

R E FE R E N C E S ... 238

INITIAL DISTRIBUTION LIST .. 240

LIST OF FIGURES

Figure 1, BGLCSS 2.0 Within the NTCS-A System Architecture 2
Figure 2, Structural Program Procedures Separate From Data 8
Figure 3, Object Encapsulating Related Functions and Data 12
Figure 4, TAE Plus WorkBench Panel ... 20
Figure 5, TAE Plus WorkBench Resource File Selection Panel 21
Figure 6, TAE Plus Panel Specification Panel ... 22
Figure 7, TAE Plus Panel Details Panel .. 23
Figure 8, TAE Plus Specify Initial Panels Panel .. 23
Figure 9, TAE Plus Connection Specification Panel ... 24
Figure 10, TAE Plus Item Specification Panel .. 25
Figure 11, TAE Plus Item Constraints Panel ... 26
Figure 12, TAE Plus Push Button Presentation Panel ... 26
Figure 13, TAE Plus Message Presentation Panel .. 27
Figure 14, JOTS II M enu Tree ... 27
Figure 15, TAE Plus Files Generated and Function Invocation for Setup Module 28
Figure 16, BGLCSS 2.0 Set Up Battle Groups Initial Panel 30
Figure 17, BGLCSS 2.0 Battle Group Events Initial Panel 31
Figure 18, BGLCSS 2.0 Overview Initial Panel .. 32
Figure 19, Symbolic Constants for Battle Groups and Ships 35
Figure 20, Battle Group Data Structures .. 36
Figure 21, Battle Group Information Type Definition .. 36
Figure 22, Settings Information Type Definition ... 37
Figure 23, Location Information Type Definition .. 38
Figure 24, Capacity Information Type Definition .. 38
Figure 25, Ship Information Type Definition ... 39
Figure 26, Location Information Type Definition .. 39
Figure 27, F-76 Ship Fuel Information Type Definition 40
Figure 28, F-44 Aircraft Fuel Information Type Definition 40
Figure 29, Ordnance Information Type Definition .. 41
Figure 30, Battle Group Event List .. 41
Figure 31, Battle Group Event Type Definition ... 42
Figure 32, Battle Group Related Event and Battle Group Event List 43
Figure 33, Relation Type Definition ... 44
Figure 34, Battle Group Header List ... 44
Figure 35, BGLCSS 2.0 Event List Panel .. 45
Figure 36, Battle Group Header Type Definition .. 45
Figure 37, Battle Group Data and Function Members .. 55
Figure 38, Battle Group Array Data and Function Members 55
Figure 39, Ship Class H ierarchy .. 56
Figure 40, Ship Class Data and Function Members .. 57
Figure 41. BGLCSS Event Class Hierarchy With Twelve Derived Classes 58
Figure 42, Logistics Event Class Hierarchy With Three Synthetic Derived Classes .61

Vi

Figure 43, BGEvent Class Data and Function .. 62
Figure 44, BGLCSS Template List Class ... 63
Figure 45, Symbolic Constants for Battle Groups and Ships 64
Figure 46, BGLCSS 2.0 Set Up Battle Groups Initial Panel 67
Figure 47, BGLCSS 2.0 New Battle Group Data Panel ... 67
Figure 48, BGLCSS 2.0 Battle Group Data Panel .. 68
Figure 49, BGLCSS 2.0 Battle Group Ships Panel .. 69
Figure 50, BGLCSS 2.0 Ship Logistics Panel .. 69
Figure 51, BGLCSS 2.0 Ship F-76 Fuel Panel .. 70
Figure 52, BGLCSS 2.0 Ship F-44 Fuel Panel .. 71
Figure 53, BGLCSS 2.0 Select Ordnance Panel .. 71
Figure 54, BGLCSS 2.0 Ordnance Load Panel ... 72
Figure 55, BGLCSS 2.0 Ordnance Data Panel .. 72
Figure 56, BGLCSS 2.0 Aircraft Load Panel ... 73
Figure 57, BGLCSS 2.0 Aircraft Data Panel .. 73
Figure 58, BGLCSS 2.0 Battle Group Events Initial Panel 74
Figure 59, BGLCSS 2.0 Battle Group Course and Speed Panel 75
Figure 60, BGLCSS 2.0 ASW Threat Level Panel ... 75
Figure 61, BGLCSS 2.0 AAW Threat Level Panel ... 76
Figure 62, BGLCSS 2.0 Set Station Panel ... 76
Figure 63, BGLCSS 2.0 Station Results Panel .. 77
Figure 64, BGLCSS 2.0 Ship Course and Speed Panel .. 77
Figure 65, BGLCSS 2.0 Underway Replenishment Panel 78
Figure 66, BGLCSS 2.0 Underway Replenishment Results Panel 78
Figure 67, BGLCSS 2.0 Consol Panel .. 79
Figure 68, BGLCSS 2.0 Consol Results Panel .. 79
Figure 69, BGLCSS 2.0 Fuel Transfer Panel ... 80
Figure 70, BGLCSS 2.0 Select Ordnance Panel .. 80
Figure 71, BGLCSS 2.0 Ordnance Transfer Panel ... 81
Figure 72, BGLCSS 2.0 Raid Panel ... 81
Figure 73, BGLCSS 2.0 Raid Ships Panel ... 82
Figure 74, BGLCSS 2.0 Strike Panel .. 82
Figure 75, BGLCSS 2.0 Strike Ships Panel ... 83
Figure 76, BGLCSS 2.0 ASW Panel ... 83
Figure 77, BGLCSS 2.0 ASW Ordnance Panel .. 84
Figure 78, BGLCSS 2.0 Select BG Ship Panel .. 84
Figure 79, BGLCSS 2.0 Select Ship Aircraft Panel .. 85
Figure 80, BGLCSS 2.0 Select Summary Report Panel .. 85
Figure 81, BGLCSS 2.0 Battle Group Shuttle Requirements Report Panel 86
Figure 82, BGLCSS 2.0 Commodity List Panel .. 86
Figure 83, BGLCSS 2.0 BG Summary By Single Commodity Panel 87
Figure 84, BGLCSS 2.0 Battle Group Selection Message Panel 87
Figure 85, BGLCSS 2.0 Ship Selection Message Panel .. 88

vii

Figure 86, BGLCSS 2.0 Insufficient Data Message Panel 88
Figure 87, BGLCSS 2.0 Print Job Message Panel .. 88
Figure 88, BGLCSS 2.0 Incorrect DTG Format Message Panel 89
Figure 89, BGLCSS 2.0 Incorrect Lat/Long Format Message Panel 89
Figure 90, BGLCSS 2.0 Close All Events Panels Message Panel 89
Figure 91, BGLCSS 2.0 New BG Data Saved Message Panel 90
Figure 92, BGLCSS 2.0 Event List Panel .. 90
Figure 93, BGLCSS 2.0 Sample Help Panel .. 91
Figure 94, BGLCSS 2.0 Overview Initial Panel ... 91

viii

ACKNOWLEDGEMENTS

I would like to thank the students and faculty of the Computer Science and the

Operations Research Departments at the Naval Postgraduate School for their interest and

support throughout this work. In particular, I would like to thank Dr. C. Thomas Wu, Roger

Stemp, and CDR Gary Hughes for their guidance and encouragement throughout this

project. It was former Computer Science Department Chairman Prof. Robert McGhee's

original suggestion to take on this project as part of my duties as a civilian computer

systems programmer at the Naval Postgraduate School Computer Science Department and

to pursue this research area as part of my thesis work.

ix

1. INTRODUCTION

A. BACKGROUND OF BGLCSS

The Battle Group -)gistics Coordinator Support System (BGLCSS) is a logistics

simulation modeling tool to be used by battle group logistics coordinators to track, plan,

and predirt F-76 ship fuel, F-44 aircraft fuel, and ordnance states for ships in a battle group.

T,,, king these states involves applying various usage rates for each commodity and ship

type based on the passage of time and the planning and scheduling of battle group events

ISCHRADY 90]. Battle group events that can be planned include underway replenishment

and consol. Events that can be scheduled include ship stationing events, raids, strikes, anti-

submarine warfare (ASW) prosecutions, changes in ship or battle group course and speed,

fuel and ordnance transfers outside the battle group, and changes in ASW or anti-aircraft

warfare (AAW) threat level.

BGLCSS 1.0, written in Turbo Pascal 6.0 for a DOS environment, is the predecessor

to BGLCSS 2.0 and was originally developed by the Operations Research Department at

the Naval Postgraduate School. After the program was tested during Commander Second

Fleet, Fleet Exercise (C2F FLEETX 3-90) in June, 1990, and during C2F FLEETX 1/91-2/

91 in November, 1990, it was decided to move the program to the Navy Tactical Command

System Afloat (NTCS-A) Unified Build 2.0. This system consists of a set of applications

including the Joint Operational Tactical System (JOTS II) [INRI 91b].

JOTS I1 is an automated Command, Control, and Communications Display and

Decision System designod to meet the tactical situation assessment needs of battle group/

force commanders, surface warfare commanders, ship commanding officers, and shore

command centers [INRI 92c]. JOTS II has digital interfaces with a variety of military

communications systems and other shipboard computer systems. It processes tactical

information received from other systems and automatically correlates this data with its

existing tactical contact or Track Data Base Manager (TDBM). This tactical database is

then used to generate computer graphics images at color Sun workstations IINRI 92a].

The workstations operate using a modified version of the standard commercial UNIX

operating system SunOS 4.1.1. Applications are written in either C or Ada and use the X

Window Manager and Government Off The Shelf Software (GOTS) programming tools.

Among these GOTS tools, the Wizard Tool Kit, is a Motif-based C function library used

for building graphical user interfaces [INRI 92dI.

BGLCSS 2.0, a tactical decision aid within the NTCS-A Unified Build System

architecture, is shown in Figure 1. It is written in C using a structured programming

paradigm and, instead of using the Wizard Tool Kit for building the graphical user

interface, uses Transportable Applications Environment Plus (TAE Plus), a User Interface

Management System (UIMS).

Other JOTS II BGLCSS 2.0

Applications and
Tactical Decision Aids TAE Plus 5.2 Beta UIMS

WizardDatabases Tool Kit

Motif 1.1.4

Xlib

XI I Window Manager, XIIR5

GOTS 2.0

SunOS 4.1.1

NTCS-A Unified Build 2.0

Figure 1: BGLCSS 2.0 Within the NTCS-A System Architecture

TAE Plus is a visual graphical user interface builder developed by the National

Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) and

-- - • • , • • • I I I I 2

distributed by NASA's Computer Software Management and Information center

(COSMIC), a non-profit unit of the University of Georgia. It supports rapid building,

tailoring, and management of graphic-oriented user interfaces. The main features of TAE

Plus include: 1) the Work Bench, an interactive tool that supports the design and layout of

an application's interface; 2) the Window Programming Tools (Wpt) Package, a set of

application callable subroutines used to control a user interface during execution time; and

3) the Code Generator, which automatically generates code for the interface in C, C++,

Ada, or TCL (TAE Command Language) [NASA 91a].

This thesis deals with the design, imp'ementation, maintenance, and extension issues

of structured programming versus object-oriented programming for real-world applications

such as the BGLCSS tactical decision aid within the NTCS-A Unified Build.

B. OBJECTIVES

This thesis was embarked upon to determine whether there are significant differences

between the structured and the object-oriented implementation of the same application. The

object-oriented paradigm promises, among other things, a more reliable end product, easier

maintenance, and easier extension. We seek to demonstrate the benefits of using an object-

oriented approach for a real-world application such as BC-LCS and to argue that an object-

oriented approach is particularly suited for large, multi-component systems such as the

applications within the NTCS-A Unified Build.

C. SCOPE

The Navy Space and Warfare Command (SPAWAR) project specifications demanded

that BGLCSS 2.0 be written in C using a structured programming paradigm. While much

of this project has been devoted to developing robust algorithms to realistically simulate the

logistics events in C, this thesis critiques the use of the structured programming paradigm,

especially in large systems.

The decision to use a visual graphical user interface UIMS such as TAE Plus instead

of the Wizard Tool Kit, a set of low-level Motif functions, significantly decreased overall

development time. Furthermore, we propose that by using TAE Plus with C++, NTCS-A

applications could benefit significantly not only from improved software development

time, but also from improved product reliability, improved program maintenance, and

easier program extension. Due in large part to the breadth of the BGLCSS application, only

a subset of the structured paradigm implementation has been re-designed using an object-

oriented paradigm in C++.

D. ORGANIZATION

Chapter II of this thesis provides an overview of the structured programming and the

object-oriented paradigms. Chapter III presents an abbreviated presentation of the

BGLCSS 2.0 graphical user interface design using TAE Plus. Chapter IV covers and

analyzes the structured design and implementation of the structured programming version

of BGLCSS in C. Chapter V covers and analyzes the object-oriented programming design

of BGLCSS in C++. Chapter VI summarizes the work accomplished and provides

recommendations for program maintenance and extension. The appendices contain the

graphical user interface panels, the C and C++ program listings.

4

II. BACKGROUND OF THE PROGRAMMING PARADIGMS

A. GENERAL

Discussion about the merits of object-oriented programming have inundated technical

journals over the past few years and has appeared even in non-technical journals. In a recent

article in Business Week the question was asked, "Will object-oriented programming

transform the computer industry?" The article goes on to describe in layman's terms the

differences between "the old way", i.e. structured programming, and "the new way", i.e.

object-oriented programming, of designing and writing programs. Structured programming

was characterized by three terms: confusion, hand crafting, and breakdowns. In contrast,

object-oriented programming was described by three counterpart terms: understanding,

reusing, and repairing [HAMMONDS 91].

Not all supporters of the object-oriented paradigm agree that there is a sharp boundary

between "the old way" and "the new way." Rather, object-oriented principles can be said

to have evolved from the lessons learned from years of structured programming just as

structured programming principles have evolved from the lessons learned from years of

machine and assembly language programming. Holub, for example, cautions against

looking for the "major shift in paradigm" promised by some object-oriented paradigm

enthusiasts. In his book about programming with objects in C and C++, he introduces

object-oriented principles by using code written in C within a structural programming

paradigm, followed by code written in C within an object-oriented paradigm, and finally

the object-oriented C++ version. He believes that object-oriented programming is merely a

collection of useful programming techniques that can be applied to any computer language.

An "object-oriented language" provides a few built-in mechanisms for operations that can

be performed explicitly in a non-OOP language. Holub even argues that a program can be

written in C in an object-oriented way just as easily as a program written in C++ and

provides ample examples of code written in C that mimic some object-oriented principles

[HOLUB 921. It is not enough, however, that a program be written in an object-oriented

5

way in C as in C++. Much of this code is very difficult for C and C++ programmers alike

to understand even though they are accustomed to reading C code within a structured

programming paradigm, the paradigm for which it was designed. Using a structured

programming language to perform object-oriented techniques is a less than optimal fit of

resources and is not the best application of the object-oriented paradigm.

It can even be argued that C++, while designed to support object-oriented

programming, may not be the best language for object-oriented programming. Shiffman

[SHIFFMAN 92] maintains that the pure object-oriented programming language Smalltalk

is far easier to use than C++. With Smalltalk, it is possible to write more comprehensible,

more maintainable programs and class reuse between applications is far more prevalent in

contrast to C++. Given the SPAWAR project specifications to use C to implement

BGLCSS 2.0, the advantages of using a pure object-oriented programming language such

as Smalltalk are outweighed by the benefits of using C++. A move to C++, because it is a

superset of C, provides a more evolutionary transition to an object-oriented paradigm than

moving from C to an entirely different language with its own syntax and conventions.

B. GOALS OF SOFTWARE DEVELOPMENT

To distinguish between these two paradigms and determine whether or not the object-

oriented programming paradigm is better than the structured programming paradigm, we

need to identify specific goals of good software development. Meyer [MEYER 881 cites

several "quality factors" of software development: correctness, robustness, extendibility,

and reusability. Correctness is defined as the ability of software to exactly perform its tasks,

as defined by the requirements and specifications. Robustness refers to the ability of

software to function even in unintended conditions. Extendibility is a subjective measure

of the ease with which a program can be changed to conform to a change in program

specifications. For instance, a simple design is easier to adapt to specification changes than

a complex one. Furthermore, the more autonomous or decentralized the program modules,

the higher the probability that a simple change will affect just one module rather than

6

trigger off a chain of reaction of changes over the whole system. Finally, reusability is the

ability of software to be reused, in whole or part, for new applications and thereby

significantly reduce development costs. With these software goals in mind, we can now

discuss the extent to which each paradigm addresses these goals.

C. STRUCTURED PROGRAMMING PARADIGM

Machine and assembly languages reflect the architecture of the machines on which

they operate. Like these machines, they are composed of data, arithmetic expressions,

assignments to memory locations, and control flow. Among the problems associated with

using these languages to develop software are the difficulties in debugging problematic

code and the high cost of this tedious process. These problems were part of the impetus

behind the development of higher-level languages such as Fortran and later, C. The C

programming language has been described as a higher-level language that "rebuilds" an

underlying machine to make it more convenient for programming [SETHI 901. In general,

the development of programming languages from the first generation languages to the

current generation of languages has been a continual search for improved correctness,

robustness, extendibility, and reusability. Five characteristics of the structural

programming paradigm are of interest to our discussion: separate code and data, built-in

data types, top-down functional decomposition and function-based design, distributed

functionality, and limited code reuse.

I. Separate Code and Data

Procedures and functions operate on data and are defined and coded separate from

each other (see Figure 2). This is particularly apparent in pre-ANSI C programs (see

Appendix A). The data structures and simple data types are usually defined in header files,

i.e. files with a ".h" at the end of the file name. The functions that operate on the data are

usually defined in separate files with a ".c" at the end of the file name. When a driver

program uses these functions and data, it is necessary to indicate to the C compiler

preprocessor to put a copy of the header file in the driver program file when compilation

7

occurs. Separately, the names of functions found outside of the main program are declared

to be external to the file. The names of procedures or functions and global data must be

unique so that they do not conflict with one another. There are two problems with the

separation of these program components. First, procedures and functions can be called and

passed the wrong data. Second, by unintentionally accessing data from procedures and

functions, changes to data become uncontrollable in large systems where no one knows

where a particular data item is being changed or why. These two weaknesses associated

with the separation of code and data frequently reduces program correctness and

robustness.

[Procedure[

P 'rocedure PrI oceue• Pro ur°e"°

Data DataProcedure Pr ocedureI

(Data) Data)

Figure 2: Structural Program Procedures Separate From Data

2. Built-In Data Types

While most languages implement integers and floating point numbers as built-in

types, most do not implement complex numbers, calculations with physical units (barrels,

tons, etc.), date time groups, and latitudes/longitudes. If these types are needed, they cannot

S.. . .. i i i i i i i 8

be added easily. There are two problems with being limited to built-in data types. First,

libraries become long lists of specialized functions rather than general functions handling

a variety of types. The GOTS library is a case in point [INRI 92b]. It contains numerous

functions that perform conversions from one built-in data type to another as shown in Table

1. This library is a proliferation of very specific functions that convert one built-in type

representation of a real-world entity to another built-in type representation.

Table 1: A SAMPLE OF GOTS DATA CONVERSION ROUTINES

Function Description Arguments Return Type

dtg date time group string to inte- char tmetl int
ger

dtg-to-a integer value of time to date int tine char*
time group string

lat toA double value of latitude to lati- double lat char*
tude string

11 toA double values of latitude and double Wat, double Ing char*
longitude to latitude/longi-
tude string

Since each GOTS library function requires the data type of the function

arguments to be specified and only built-in types are allowed, it is difficult to write more

general and therefore flexible library functions. This undermines reusability of the library

functions. Second, it is possible to perform meaningless operations on the real world data

being modelled. As an example, a date time group is often represented as an integer and yet

it is still possible to add two date time groups together. This contributes to a poor

representation of the real-world entity being modeled in software.

3. Top-Down Functional Decomposition and Function-Based Design

The top-down functional approach to program design is based on the premise that

software development should be an incremental refinement of the system's abstract

9

function rather than the data it represents in the real world. This process has often been

described as a tree where the nodes of the tree represent elements in the decomposition and

the branch nodes represent a refinement of its parent node. The primary benefits of the top-

down functional approach is that it is logical and promotes organization and discipline.

However, it fails to account for the evolutionary nature of software system development.

Additionally, by focusing on the function rather than the data, a top-down approach does

little to promote reusability. During the life of the system, it is the data and not the functions

that are the most stable part of a system. The trade-off with this top-down approach is that

it is fairly easy to design and develop an initial structure for the short term. However, in the

long-run, as the system changes, it will be necessary to constantly redesign the system

instead of merely extending the system. By focusing on the data instead of the immediate

purpose of the system, the long-term benefits of reusability and extendibility can be

achieved [MEYER 88].

Whether or not top-down design is used, structural programs are primarily

function-based. Bottom-up design involves finding a set or sets of fundamental operations

that are used throughout the program and writing procedures or functions to implement

them. A top-down approach is then often used to connect the routines. In either a top-down

or bottom-up approach, the emphasis is on the data upon which the program operates.

4. Distributed Functionality

Procedures and functions tend to be tightly coupled using this paradigm. That is,

procedures and functions are distributed throughout a program and tend to know too much

about other procedures and functions. Changes to one function may force changes in other

functions. If, for instance, a new ship type such as the USS Arleigh Burke class needs to be

incorporated into a program, all of the functions regarding ship type will need to be

modified. Since these functions are hard-coded into the structure of a program, program

extension becomes much more difficult to perform.

10

5. Limited Code Reuse

The structured paradigm inherently leads to repetition in programming. By using

built-in data types and function-based design, code reuse can be achieved only by the low

level method of cutting and pasting code from one program, and explicitly modifying it for

its new data type (see Appendix A, InsertBGEvent, InsertBGHeader, and InsertBGHeader

functions). Conventional languages require general purpose libraries which are limited to

a long list of special purpose sort routines for sorting arrays of integers, floats, etc., instead

of a generic sort function that is data-type independent.

D. OBJECT-ORIENTED PROGRAMMING PARADIGM

The object-oriented programming paradigm is a software design and development

model incorporating several techniques explicitly aimed at code reuse, improved program

reliability, and easier software modification, extension, and maintenance. The object-

oriented programming paradigm is particularly well suited for the development of large

sophisticated software systems that inherently evolve over time. Characteristics associated

with the object-oriented paradigm include encapsulation, data abstraction, inheritance,

polymorphism, persistence, delegation, and generacity. The first four characteristics are

supported by the 2.1 version of C++, and, since C++ was the language chosen to design a

subset of BGLCSS 2.0, this thesis will concentrate only on encapsulation, data abstraction,

polymorphism, and inheritance issues. Generacity, a characteristic added to C++ version

3.0 and also known as parametric polymorphism, will be briefly mentioned. Although

encapsulation and data abstraction are used within other paradigms, it will be shown that

they are far more powerful within an object-oriented paradigm than within a structured

programming paradigm.

How does the object-oriented paradigm lead to a more reliable end product, and easier

software modification, extension, and maintenance? In general, the process begins by

producing a more realistic representation of the real world entities involved. For example,

by combining ship functions and ship data into a ship object, the real world ship entity is

Ii

more coherently represented in code. An object is defined in terms of the data it

encapsulates and the operations on the data that are allowed by the set of interface functions

(see Figure 3).

Natne
SHullNumber

F6Capacity

Other Data...
Private members
Public functions

GetName

GetHullNumber

CnmsumeF76Fuel

Other Functions

Ship Object

Figure 3: Object Encapsulating Related Functions and Data

A real world ship has attributes such as its name, hull number, F-76 fuel capacity, etc.,

and can perform various functions such as stationing, changing course and speed, etc. Ship

attributes and the functions it can perform are said to be encapsulated within a ship object.

The operations that can be performed on the encapsulated data are also known as the

object's interface functions and the implementation of these functions is internal to the

object. For example, a ship object frequently changes its course and speed which affects its

internal fuel consumption and levels. These are attributes internal to the definition of a ship

object.

Encapsulation allows for information hiding and the object-oriented paradigm's

method of information hiding goes beyond local variables. Information hiding protects data

from uncontrolled access and change. Variables that are local to a procedure or function,

12

for instance, can only be changed within the function or procedure. In this way, they are

protected from access from other functions and procedures. Global variables, on the other

hand, are vulnerable to unintended change or access by the functions and procedures in

their scope.

Objects, in C++, can have data or function members which are declared to be either

public, protected, or private. These terms refer to the level of access to these members. For

instance, all of a ship's data members can be declared to be private to the rest of the

program. In this case, only a ship's member function can access private data to that object.

Instead of passing variables to functions, it is the variables that are receiving messages in

the form of functions. The variables themselves are designed to control which functions can

modify which variables in the program.

1. Data Hiding and Data Abstraction

Data hiding is a practice whereby the programmer restricts him or herself to the

public interface of a type for purposes of accessing or changing the value of an object of

that type. The advantage of data hiding is that it encourages the programmer to protect data

from unintended access and modification.

Data abstraction is defined as the activity of creating a model or concept of a real-

world phenomenon at such a level that inessential details can be ignored. It is data typing

combined with data hiding. In C++, the programmer creates user-defined types using the

class mechanism. Abstract data types in C++ are not built-in data types such as integers or

floating point numbers but are treated as though they were built-in. The term, user-defined

data type, is a more appropriate term. C++ is an extensible language in that the language

can be extended to include user-defined data types.

There are two benefits to data abstraction. First, it is easier to design and

implement a system that is built out of entities that incorporate data hiding.The focus can

be on the properties of the procedural interface of the various entities. These properties are

typically far simpler and more abstract than the algorithms that implement them. Second,

13

the decoupling of the interface from the implementation allows program entities to be

reimplemented without having to modify any other part of the program. C++'s most

important abstract data type is the class.

a. Class

A class is an internal template. In C++, it is the extension of a C struct. A

struct (in other programming languages, it is known as a record) is a group of several

different types of data in a single entity. An object is actually an instance of a class that

occupies memory. For example, a class could be used to represent a ship. Although the

actual data structure of a class is basically a struct with functions associated with it, it is

considered as a single entity. A definition of a class in a C++ program conceptually

introduces a new type into the language. The most significant feature of a class is that

objects of the class can be treated the same way objects of a fundamental type such as

integer [HOLUB 921.

b. Member Functions

A C++ class differs from a struct in C in that it contains member functions as

well as data. The member function can be declared inside the class body, but are usually

declared in a prototype form in the class definition and are defined later on. The need for

member functions is related to data hiding mentioned earlier. Member functions can access

private member data values. Member functions are one way to work with private data.

Putting the member functions and member data together makes the data active and more

cohesive.

c. C++ Constructors and Destructors

C++ provides constructor and destructor tfunctions and almost every class

contains these special member functions. They initialize and clean up class objects.

Constructors provide a way to ensure that objects are defined with initial values without

violating the constraints of data hiding. Destructors are important to free up object memory

14

that was allocated by the constructor. A class can have several different constructors to

allow objects to be able to be initialized in different ways with different argument. One of

the greatest advantages of constructors and destructors is that they simplify software

maintenance. If, for instance, the specification for the format for ship hull numbers were to

be changed, only the class member data and functions would be changed. In structured

programmir , a "simple" change such as this one, can change hundreds or even thousands

of lines of code that are closely tied to the format of the data [PERRY 921.

2. Inheritance and Class Relationships

Inheritance is used to describe special relationships between classes. It is

generally used to achieve two goals: 1) It can be used as an abstraction tool to organize

classes into hierarchies of specialization; and 2) It can be used as a code reuse mechanism

to create a new class that bears strong resemblance to an existing class with added

refinements.

In the first case, inheritance reflects a semantic relationship between classes

where one class's member functions are used to refine some attributes of an existing base

class while inheriting the remaining attributes. This form of inheritance could also be a

mechanism to embody the strong similarities between two existing abstractions such that

an object of a base class can be interchanged by an object of a derived class. The ability of

a program to handle many forms of a class as though they were the same. an example of

polymorphism, which is further discussed in the next section, is an important abstraction

tool that shields the programmer from the implementation details of derived classes.

In the second case, inheritance is used to share code. While a class may not exhibit

all the properties of its base class, it may be similar enough that the reuse gains make

inheritance worthwhile. For example, although an ASW threat level event and a ra'1 event

are not interchangeable, they may have enough code in common that a common evolution

through inheritance could lead to code sharing.

15

Coplien identifies four specific relationships between classes that affect class

design and class hierarchy design: the is a, has a, uses a, and creates a relationships. The

is a relationship is one where specialization or subtyping is involved. A destroyer is a type

of ship and therefore, a destroyer class could be derived from a ship class. Another

relationship between classes is called composition or a has a relationship. For example, a

ship has a F-76 fuel state. Composition is implemented by either designating one class as

a member of another or by one class referencing another object. A uses a relationship

exists when a member function of a class takes an instance of some other class and uses it

as a parameter. A uses a relationship exists when one class member functions calls on the

services of some other class. A creates a relationship is similar to a uses a relationship but

it is between an object and a class instead of between objects. In other words, an instance

of one class, during the execution of one of its member functions, makes a request of some

other class to create an instance of an object of the class. The identification of these

relationships significantly influences the details of class design and class hierarchy design

[COPLIEN 921.

Class hierarchy design can take on two different forms: single or multiple

inheritance. Single inheritance allows the creation of a new class by using an existing class

as a model. In other words, it is possible to inherit one class from another, creating new

classes from existing ones. The original, or base class, shares its code with the new class.

Code sharing can make programming much easier because less code needs to be rewritten.

In some cases, new features need only be added to the new, derived classes. Multiple

inheritance, by contrast, is the creation of a new class from multiple existing classes. C++

implements both single and multiple inheritance.

3. Polymorphism

When writing C++ programs. the same function name can be used with different

types of objects. Polymorphism means "many different forms." Perry asserts that

16

polymorphism is one reason why C++ programs can be written faster than C programs. For

instance, in C++, various objects can be prirted out with the same function name:

Ship.print); // Prints the Ship object

BGEvent.print(); // Prints the BGEvent object

By using the same function name for different objects to perform the same

operation such as printing, the "clutter" is removed from the code. There is no need to name

the functions specific to the data type being manipulated as shown in the following C code:

PrintShip); /*Prints a Ship data structure*/

PrintBGEvent(); /*P;:ints a BGEvent data structure*/

On the surface, the ability to use the same function name print() for several

different objects merely seems to be a syntactic advantage of removing "clutter." However,

what is really happening is that the same message or function name causes different

responses depending on which object is receiving the message. One benefit of

polymorphism is that it models the real world object better than the structured paradigm by

using one command to be issued to different objects.

With polymorphism, each time a new object is added to a program, no changes to

the existing code are required. All that is required is that a new function is added to the

object. Therefore, polymorphism facilitates program extension by eliminating the need to

alter the existing program code.

Parametric polymorphism, a mechanism supported by C++ 3.0 as templates, has

been argued to be the mechanism allowing for the highest degree of code reuse of all of the

object-oriented mechanisms. Templates in C++ are similar to generic packages in Ada.

Templates define families of types and functions. They are an alternative to inheritance

hierarchies constructed for code reuse. For example, a template , ,I ai -be designed to

implement a doubly linked list and can be used for any type. Thi,, k , s I T-uie is based on

the reuse of source code rather than object code. By contrast, much ol the functionality of

a base class can be reused by a derived class at the object code level. Template classes can

be used to build generic class libraries.

17

E. COMPARISON OF THE PARADIGMS

In comparing the two paradigms, it is useful to point out each paradigm's strengths

and weaknesses in order to determine which paradigm contributes more to the goals of

software engineering as described by Meyer, i.e. correctness, robustness, extendibility, and

reusability.

The strengths of the structured programming paradigm are limited. First, in

comparison to developing code in an ad hoc manner, structured programming and the top-

down functional decomposition approach provides organization to complex system

development. Fortran, assembly language, and machine code programming pale in

comparison to code written using a structured programming paradigm.

The weaknesses of this paradigm, however, are numerous. First, by separating the

code from the data, there is the possibility of passing the wrong data to the code and data

can be accessed and changed in uncontrollable ways. This reduces the correctness and the

robustness of a program. Second, most languages associated with the structured

programming paradigm are limited to built-in data types with the exception of Ada and

Modula-2. In general, the ability to create a general library of functions results in either a

proliferation of library functions or the lack of them. This weakness affects reusability.

Also, meaningless operations such as addition can be performed on entities such as a date

time group. Third, the down side of a top-down functional decomposition approach is that

it inherently leads to requiring repeated redesigns when program extensions are required.

Fourth, with functionality distributed throughout a program, changes to one function may

force changes to other functions. This compromises program extension efforts as well as

program correctness and robustness.

The object-oriented programming paradigm provides more techniques to achieve the

software goals of correctness, robustness, extendibility, and reusability than in the

structured programming paradigm. It can be said that some elements of the structured

programming paradigm have been incorporated within the object-oriented programming

18

paradigm. An obvious example is the emphasis on an organized, top-down, high-level

approach to design.

Although data abstraction and data hiding are supported in the structured

programming paradigm, they are more powerful within the object-oriented paradigm. The

primary reason for this stems from the combination of data and functions within an object

of a class. The object of a class provides a more realistic representation of the real-world

entity and, when used within a program, limits the degree to which a change in an object's

data or functions affects other parts of the program and forces a cascade of changes.

Polymorphism, a technique used when calling functions of the same name for objects of

different classes, makes program code easier to read. Template classes, a C++ feature to

create generic classes, allows the building of truly general class libraries which is not

possible with a structured programming paradigm.

19

III. BGLCSS 2.0 GRAPHICAL USER INTERFACE DESIGN

A. TAE PLUS OVERVIEW

The TAE Plus version 5.2 beta release was developed under SunOS 4.1.1 on a

SPARCstation 2. Components used to develop TAE Plus include Release 4 of the X

Window System (X 1 R4), Open Software Foundation (OSF) OSF/Motif 1.1.4, InterViews

2.6 from Stanford University; and GNU g++ version 1.40.3. As far as C++ code generation

is concerned, the TAE Plus installation source code tree was subsequently rebuilt to link

statically with SunC++ 2.1. While the above components constitute the only officially

supported platform for this beta release, TAE Plus version 5.2 beta was also tested with

OSF/Motif 1.1.3. The TAE Plus installation guide urges users to upgrade to OSF/Motif

1.1.4 (or 1.1.3) as soon as possible to take advantage of the many problems fixed by OSF.

However, the release of TAE Plus used for this thesis is expected to work with versions

1.1.1 and 1.1.2 of OSF/Motif as well, although behavior may vary [NASA 92b].

TAE Plus is a graphical user interface builder used at three different levels. First, it is

used at the WorkBench level as shown in Figure 4 to visually design panels (windows) and

items (buttons, selection lists, labels etc.).

M ---- --

File Edit Arrange Auxiliary Help
% M......

Figure 4: TAE Plus WorkBench Panel

20

Also at this level, panels and items are named, defined, and various constraints and

details such as whether or not the item is an "event-generating" one, are added. The term
"event-generating" should not be confused with the battle group events simulated in

BGLCSS 2.0. An item is event-generating if it causes another panel to be displayed or if a

call to a function is made. At this point, all of the information created for an interface is

contained in a resource file. The format for the name of a resource file is the application

name appended by a . res suffix (see Figure 5).

•~~~~~~~........... ... -. ••. t-..'.i•'• :.•..:...•MN.

.."............,..... ..-.. .

Figure 5. TAE Plus WorkBench Resource File Selection Panel

Second, TAE Plus generates code for all of the event-generating items in the

application panels. While an in-depth discussion of event-driven programming is beyond

the scope of this thesis, it is important to understand the difference between an event-

21

~ ~~~Mi i ix

generating item and a non-event-generating item. An event-generating item is an item such

as a button or a selection list that, when pushed or when an item is selected, another

interface activity takes place. A non event-generating item is an item such as a text keyin

item where users enter data.

Third, at the source code level, it is the application programmer's task to integrate the

calls to application library functions with the code generated by TAE Plus. When this

project began, TAE Plus Version 5.1 generated only Ada, C, and TAE Plus Command

Language code. In the meantime, a beta version of TAE Plus was released providing code

generation in C++. Therefore, it was possible to build a graphical user interface and

generate C code for the structured programming version of BGLCSS 2.0 as well as C++

code for the object-oriented programming version of a subset of BGLCSS 2.0. The

integration at the source code level will be discussed in chapters IV and V with respect to

each of the implementations: in C and in C++.

B. TAE PLUS WORKBENCH

At the WorkBench level, the first step in creating an application is to create an initial

panel and to define the panel's specifications such as the panel for the battle group course

and speed event as shown in Figure 6.

M M

...... N E M

Figure 6: TAE Plus Panel Specification Panel

22

By pressing the Edit Panel Details button on the panel depicted in the last figure, the

Panel Details Panel is displayed (see Figure 7). It is used to define the panel's help file and

icon details. Applications built with TAE Plus require an initial panel(s) to be designated

as in the BGEvents module of BGLCSS 2.0 (see Figure 8).

R..' ---- I .. ,I

Figure 7: TAE Plus Panel Details Panel

......... ..

Figure 8: TAE Plus Specify Initial Panels Panel

23

Panels can be connected to event-generating buttons or calls to application functions

using the Connection Specification Panel as shown in Figure 9.

"

......

.. ,*u~~.. .uj~~i~

..... •.

.

..

Figure 9: TAE Plus Connection Specification Panel

Once a panel is created, items can be defined and added to the panel using the Item

Specification Panel in depicted in Figure 10. When an item is defined, one of its most

important attributes is its data type. Based on data type, TAF Plus provides general type

checking on user-entered data. For example, if an item is defined as a real number, and the

user enters anything else, i.e. an integer or a string, an error message is displayed by TAE

Plus to the user indicating that the data type is invalid and restored the previous entry. This

general data type checking provided by TAE Plus eliminates the need to write error

handling routines of this nature by the applications programmer.

24

Mx = . i aa~aiil a i ~ l =i

"~~~....' '

............

.

Figure 10: TAE Plus Item Specification Panel

User entered data can be further restricted by setting constraints as show in Figure 11.

For instance, a constraint on the range of valid values can be specified on a text keyin real

data type item. A course heading, in the real world, has a range between 0.0 and 359.9.

When real value is entered that falls outside of the specified range, an error message is

displayed to the user and the previous value is restored to the text keyin interface item.

25

Figure 11: TAE Plus Item Constraints Panel

TAE Plus also makes the implementation of a help button easy to define. When a

button is defined, the specific details offered to the designer are displayed in the panel

shown in Figure 12.

'MU

i :U

Figure 12: TAE Plus Push Button Presentation Panel

Furthermore, application specific error messages can be defined (see Figure 13). The

message item provides a template for making information, warning, and error messages.

26

............

Figure 13: TAE Plus Message Presentation Panel

C. BGLCSS 2.0 GUI DESIGN

BGLCSS 2.0 consists of three program modules: Setup, Events, and Overview. When

integrated into the NTCS-A Unified Build, BGLCSS 2.0 is one of several JOTS 11 Tactical

Decision Aids (TDAs) as shown in Figure 14.

JO 1: II Menu Bar Options... I DAs

Aids

BILLS5 Setup

vents

Overwew

Figure 14: JOTS H Menu Tree

Each one of these modules was built using three separate TAE Plus application and in

accordance with the User Interface Specifications for Navy Command and Control Systems

[FERNANDES 921. A script is used to call individual JOTS 1I applications. The design

decision to separate BGLCSS 2.0 into three modules was based on the way simulation

27

applications are used. In order to simulate logistics events, it is a prerequisite to define some

settings and create the entities with which to work. By dividing BGLCSS 2.0 into Set Up,

Events, and Overview, the user is directed to the three main services of the application.

Once set up is performed, events can be simulated. In addition, although help buttons are

present on every panel and provide clear instructions to the user about using the items on a

specific panel, it was decided to include an Overview module where a "Help on Help" on-

line user's manual could be provided.

Each module's C code was generated by TAE Plus based on the initial panel

uesignated, connections between items and panels, and items designated as event-

generating. A partial depiction of the files generated for the BGSetup module (see Figure

15).

BGSetup.c pan BGSetUpBGs.h
SpanBGSetUpBGs.c pan NewBG.c bg.c

BGSetupinitypan.c - "

SpanBGData.hpan BGData.c

BGSetupcreat
init.c

p

panDeIBG.h

taeconf.inp[panCloseAI.h
wptinc.inp

'fsymtab.inc pan CloseAU.c

SI global.hj
gL.egeninclude file

- 0* function call

Figure 15: TAE Plus Files Generated and Function Invocation for Setup Module

28

The BGSetup. c calls two functions, BGSetupInitializeALLPanels () found in

BGSetupjnitpan c and BGSetupCreate-InitialPanels() found in

BGSetup creatinitt . c. The first function reads the resource file created by the

TAE Work Bench and creates and initializes the TAE objects used for each panel in the

application. The second function merely calls the specific function to create the initial

panel, in this case, SetUpBGsCreatePanel() found in panSetUpBGs. c.

After calling these two functions,the main event handling loop runs the entire program

until the SETAPPLICATIONDONE flag is set. At this time, the program terminates.

During the main event loop, the functions found in the panels NewBG, BGData, DeIBG,

and CloseAll are called when event generating operations are performed by the user.

In addition to the TAE Plus code generated files, TAE Plus provides two basic sets of

library functions for applications programmers: the Windows Programming Tools package

(Wpt) and the Variable Manipulation (Vm) package.

The Wpt package contains C functions that provide programs with graphic, window-

based user interfaces. The purpose of these functions is to deliver user inputs to an

application program. Based on information provided in the resource file, Wpt determines

the desired form of user interaction and creates the appropriate displays on the screen.

When the user enters or selects values for the program inputs, Wpt functions make the

values or selection available to the program.

The Vm package consists of standard TAE data structures called Vm objects. When

an application program begins, it reads the panel and item information contained in the

resource file into these Vm objects. Wpt uses two Vm objects to acquire each set of inputs.

The "target" Vm object describes the inputs to be acquired. The "view" object describes the

presentation of the target parameters on the screen. After the user interface information is

read into the Vm objects, the program passes pointers to the objects as arguments to Wpt

functions.

The generation of C++ files is similar to that of the C files. Table 2 provides a sample

of the files produced by TAE Plus in C++. These files are found in Appendix C.

29

Regardless of the programming language used, the following figures are the initial

panels for each of the three program modules Set Up, Events, and Overview. For a more

complete presentation of the graphical user interface, see Appendix A.

Table 2: SAMPLE OF BGLCSS 2.0 SETUP C++ GENERATED FILES

File Description

BGSetup. cc Contains main procedure.

BGSetup. h Encapsulates the resource file.

BGSetup_initpan. cc Initializes all panels.

BGSetup-creatjinit. Creates the initial panel set.
cc

panBGSetupBGs .h Contains the panel's class definition and instance parameter declara-
tions.

pan_BGSetupBGs .cc Contains the panel's class methods.

item_BGSetupBGs .h Class definitions of all items in the panel and instance parameters
declarations.

Imakef i le Machine-independent template for generating the Makefile for the
application.

Figure 16: BGLCSS 2.0 Set Up Battle Groups Initial Panel

30)

CA
31

I-

.5"

W0

31

--- ---------------- i------F----------

Figure 18: BGLCSS 2.0 Overview Initial Panel

32

IV. BGLCSS 2.0 STRUCTURED DESIGN

A. GENERAL

This chapter describes the design decisions and implementation issues of BGLCSS

2.0 using a structured programming paradigm. The following chapter will discuss the

design decisions and implementation issues of a part of BGLCSS 2.0 using an object-

oriented programming paradigm.

BGLCSS 1.0 was written in Turbo Pascal to run in a DOS operating system on an

IBM PC-AT compatible microcomputer [SCHRADY 91]. According to the proposal for

research statement of work,"Moving BGLCSS into JOTS involves much more than code

conversion. The JOTS H environment includes communications interfaces and a variety of

services which must be utilized to reduce the labor intensiveness of the current version of

BGLCSS. The data, planning factors, and algorithms in the current version of BGLCSS

will carry-over, but the program must be completely restructured."

In other words, by moving BGLCSS 1.0 into the JOTS II environment, the program

would require restructuring solely in order to take advantage of the variety of JOTS II

services and to reduce user data entry activity. Among other things, it was assumed that the

algorithms would carry over. In fact, however, after extensive examination of the original

Pascal code, this was found not to be the case.

The algorithms in question, as far as the code is concerned, represent the battle groups,

ships, and events. It was thought that the original logic of the program, could be easily

translated to another programming language, a new interface attached, and JOTS services

incorporated. It was not feasible to translate or carry over any of the original Pascal code

for three reasons.

First, the original program was developed in a rapid, iterative, and ad hoc manner and

the Pascal code is a classic example of one of the weaknesses of developing software

without a high-level design. The code was largely undocumented and no high-level

descriptions of algorithms, function definitions, nor variable definitions were provided.

33

Without any of this program documentation, the original BGLCSS code was virtually

untranslatable to C.

Second, the data structures used to represent the simulated events were ill-suited for

simulation purposes and introduced unnecessary inefficiencies and redundancies into the

program.

Finally, the organization and layout of the user interface was complicated and difficult

to use. For these reasons, BGLCSS 2.0 was completely restructured to take advantage of

the variety of JOTS 11 services and, furthermore, to redesign and redevelop the algorithms,

data structures, and user interface.

The following sections present the structured design and implementation of BGLCSS

2.0. The components of the design are: the program specifications; symbolic constants;

data structures for battle groups, ships, and events; library design of battle group, ship, and

event functions; graphical user interface design; and application integration issues.

B. PROGRAM SPECIFICATIONS

The goal was to produce a program that simulates the occurrence of a number of

logistics events and calculates the usage of fuels and ordnance based on specific planning

factors. Program specifications were abstracted from the user's manual for BGLCSS 1.0

[SCHRADY 911.

C. SYMBOLIC CGNSTANTS

In BGLCSS 1.0, symbolic constants were scattered throughout the multiple file

program. Consequently, this added an unnecessary layer of confusion when trying to

understand where the constants were defined. As a result, all of the symbolic constants in

BGLCSS 2.0 are contained in one file, bg.h. shown in Figure 19. The preprocessor directive

#define gives names to constants, also known as literals. By using these literals, a

change can be easily made in one place and take effect throughout the program

34

#define MAXNAME 25
#define MAXF76COEF 3
#define MAXSHIPTYPES 8
#define MAXORD 100
#define MAXRATES 6
#define MAXACFT 20
#define MAXTHREATLEVELS 2 /* Low, Medium, High */

#define MAXENGAGEMENTS 2 /* Raid, Strike, ASW */
#define MAXINTERVALS 3
#define HOURSINDAY 23
#define MAXUSETYPES 5
#define MAXBGSHIPS 30
#define MAXBGS 10
#define MAXORD 100
#define MAXSHIPS 100
#define DTGLENGTH 15
#define MAXLENGTH 25
#define F76DATA "/h/bglcss/scripts/data/F76.dat"
#define BGDATA "/h/bglcss/scripts/data/BGData.dat"
#define BGSHIPS "/h/bglcss/scripts/data/Ships"
#define NAVYSHIPS "/h/bglcss/scripts/data/NavyShips.dat"
#define EVENTSDATA "/h/bglcss/scripts/data/Events"
#define HEADERSDATA "/h/bglcss/scripts/data/Headers"

Figure 19: Symbolic Constants for Battle Groups and Ships

D. DATA STRUCTURES

There are two different kinds of data used in this program: battle group data and event

data.

1. Battle Groups

Battle groups are represented by an array of battle group records or structs. Each

battle group is a struct containing a name, a designation, a structure containing settings

information, a structure containing location information, an array of ship structures, and an

array of capacity information structures as shown in Figure 20. The battle groups are

represented by arrays of structures. The most frequent activities associated with the battle

groups involve data access, i.e. reading or writing data. Insertions and deletions of

35

structures to the battle group are performed without regard to the order of structures within

an array. Access to structures of an array is performed easily using an index to an array.

BG [MAXBGS1
BG[I] I.... I

BG[01 Name
Designation
Settings L
Location

Ships

Results

Figure 20: Battle Group Data Structures

Figure 21 shows the C code that defines the battle group data struct. This

definition is found in the bg. h file contained in Appendix B.

typedef struct (

char Name[MAXNAME];
char Designation [MAXNAME];
SettingsInfo Settings;

LocationInfo Location;
ShipInfo Ships [MAXBGSHIPS];
CapacityInfo Results [MAXBGSHIPS];

}BGInfo;

Figure 21: Battle Group Information Type Definition

36

The first four variables contained in the settings struct shown in Figure 22 are

"trip-wire" reserve levels that are set by the user so that when reserve levels fall below these

levels, the user is notified. FuelRes represents F-76 fuel reserve level, CLFFuelRes

represents CLF fuel reserve levels, OrdRes represents ordnance reserve levels, and

CLFOrdRes represents CLF ordnance reserv- levcls. MaxF76 and MaxF44 each

represents the maximum fuel capacities for F-76 and F-44 fuels respectively. StationSpeed

represents battle group ship stationing speed, UnrepSpeed represents underway

replenishment battle group ship speed, and AcftShipSpeed represents battle group aircraft

carrier ship speed. Each of these variables are represented by a floating point type.

PredictStart is used to represent the integer value of the date time group supplied

by the user. This variable represents the first time interval for which commodity percent

capacities are to be computed. The following array of integers, PredictHours, is used to

hold the number of hours to offset each of the three intervals of time for which commoditiy

percent capacities are to be computed.

typedef struct

float FuelRes,
CLFFuelRes,
OrdRes,
CLFOrdRes,
MaxF76,
MaxF44,
StationSpeed,
UnrepSpeed,
AcftShipSpeed;

int PredictStart;
int PredictHours [MAXINTERVALS];

)SettingsInfo;

Figure 22: Settings Information Type Definition

The location information struct is used to hold the current battle group location

information as shown in Figure 23. This same struct definition is also used within the ship

struct.

37

typedet struct {
int Dtg;
float Speed,

MaxSpeed;
double Latitude,

Longitude,
Course;

)LocationInfo;

Figure 23: Location Information Type Definition

Capacity information contains three arrays as shown in Figure 24. The

F76Capacity and F44Capacity arrays are designed to each contain MAXINTERVALS

floating point values, one for each time interval.

typedet struct(
float F76Capacity[MAXINTERVALS],

F44Capacity [MAXINTERVALS];

OrdCapInfo OrdCapacity[MAXINTERVALS];
)CapacityInfo;

Figure 24: Capacity Information Type Definition

2. Ships

The ship struct shown in Figure 25 contains string variables (in C, strings are

represented as arrays of chararacters) for the name and hull number of the ship. The Type

Combatant is represented as an enumerated type having one of the following values: Air,

Combatant, Station, and Shuttle.

Identical to the battle group struct, the ship struct also contains a location struct as

shown in Figure 26.

38

typedef struct

char Name[MAXNAME];
char Hull[MAXNAME];
CLFType TypeCombatant;
LocationInfo Location;
F76Info F76;
F44Info F44;
int Approach,

BreakAway;
OrdInfo Ord(MAXORD];
Acftlnfo Acft[MAXACFT];

)ShipInfo;

Figure 25: Ship Information Type Definition

typecdet struct (
int Dtg;
float Speed,

MaxSpeed;
double Latitude,

Longitude,
Course;

)LocationInfo;

Figure 26: Location Information Type Definition

The next variable is a struct, containing data specific to the F-76 state as shown

in Figure 27. The first seven variables are integers used to represent the ship capacity in

gallons, the receive rate in gallons per minute, the transfer rate in gallons per minute, the

current number of gallons on hand, the most recent estimated number of gallons on hand,

the integer value of the date time group of the on hand reading, and the date time group of

the estimated on hand value. The last variable is an array of coefficients used in predicting

fuel consumption ISCHRADY 901.

39

typedef struct
int Capacity,

ReceiveRate,
TransferRate,

OnHand,
EstOnHand,
OnHandDtg,
Fst OnT43nDt-v ;

float Coef[MAXF76COEF];
)F76Info;

Figure 27: F-76 Ship Fuel Information Type Definition

The struct shown in Figure 28 contains data specific to the F-44 aircraft fuel state

and is almost a mirror image of the previous F-76 struct mentioned above except that the

F-44 struct does not contain a coefficients array.

typedef struct (
int Capacity,

ReceiveRate,
Trans ferRate,
OnHand,
EstOnHand,
OnHandDtg,

EstOnHandDtg;
)F44Info;

Figure 28: F-44 Aircraft Fuel Information Type Definition

An array of Ordlnfo structs, as shown in Figure 29, is contained in the ship struct.

Each Ordinfo struct represents data specific to one ordnance item. The variables contained

in this struct are similar to the previous two fuel structs except that the Ordlnfo struct

contains an array of use rates. MAXRATES refers to the six different use rates: low,

medium, or high average threat levels, and raid, strike, or ASW events.

40

typedef struct
OrdName Name [MAXNAME];
int TotalNumber,

Capacity,
Range,
TransferRate,
OnHand,
EstOnHand,
OnHandDtg,
EstOnHandDtg;

OrdUse UseRate [MAXRATES];
)OrdInfo;

Figure 29: Ordnance Information Type Definition

3. Events

A doubly linked list is a data structure consisting of structs connected to each

other by pointers to the next and to the previous struct, as shown in Figure 30.

[lead

v.Pe BGEvent HGEvent BGEven I Null

Null i 1 I

Figure 30: Battle Group Event List

The decision to use such a data structure was based on the intended use of battle

group event information. Since the purpose of BGLCSS is to dynamically simulate events

in time, the easy insertion, sorting, and deletion of events is the dominant criteria for

selecting the appropriate data structure. A doubly linked list fulfills this criteria. It allows

easy movement forward and backward between list element structures, sorted insertions

41

and deletions are easily performed by manipulating pointers. The pointers on the ends of

the list both point to null.

There are three different doubly linked list data structures used to implement the

battle group events: the battle group event list itself, the related event list, and the header

list. The battle group event list is represented by battle group event information structs in

a doubly linked list. The code used to define a BGEvent is shown in Figure 31.

struct BGEvent
struct BGEvent *Prev,

*Next;
int Dtg,

CreateTime,

PredictInterval,
BGEventType EType;
PredictType PType;
CaIcType CType;
ThreatType TType;
UnrepInfo Unrep;
DirectionInfo Direction;
StrikeInfo Strike;
RaidInfo Raid;
ASWInfo ASW;

1;
typedef struct BGEvent BGEVENT;

Figure 31: Battle Group Event Type Definition

The first two variables are the pointers to the previous and to the next BGEvent

structs. The Dtg variable is the integer representation of date time group for the start of the

battle group event. The next integer variable is the system time stamp of the event's

creation time, This is a unique time stamp for each event in the event list. The next four

variables are used when evaluating each event in the list. EType is used to identify the type

of event, i.e. battle group course and speed, AAW threat level, etc. PType is used to identify

whether the BGEvent PredictType is an orphan, child, parent, or interval. The first three

values will be discussed in the next section. The interval value refers to a BGEvent which

is actually a sentinel marking the time interval for calculation purposes. Unrep is a struct

containing data relevant to an underway replenishment event. DirectionInfo contains data

42

about the course and speed of the ship involved. The last three structs contain information

specific to the strike, raid, and ASW events.

One of the most significant omissions in BGLCSS 1.0 was the way that an

underway replenishment event and its associated stationing events were handled in the

event list. When a user added an underway replenishment event, depending on the tactic

used, several stationing events were also added to the list. If a user wanted to delete the

underway replenishment, it was necessary for the user to know which stationing events to

delete as well. This problem was corrected by using an additional doubly linked list for

related events as shown in Figure 32.

Head

Nuel 11 .Relation Reation I Null

Head

Nulleil _._1 1 n I i~ en i i~ en i i i-'t Null

Null
Nu0l

Figure 32: Battle Group Related Event and Battle Group Event List

When an underway replenishment or a consol event is created, a relation event,

shown in Figure 33, is also created and inserted into a doubly linked list. The relation struct

is created based on the system creation time stamp of the underway replenishment event,

also known as a parent event. Each event associated with the underway replenishment

parent event also contains the same creation time. The relation event pointers point to all of

the child events, i.e. stationing events, in the BGEvent list. When the deletion of a

43

underway replenishment is to be performed, the related relation event is found and all of

the BGEvents to which it points are deleted along with itself. An orphan is an event that is

not related to any other event, such as a battle group course and speed or a ship stationing

event.

struct RelationType
struct RelationType *Prev,

'.lext ;

int CreateTime;
BGEVENT *Childl,

*Child2,
*Child3,
*Child4,
*ChildS;

1;
typedef struct RelationType RELATION;

Figure 33: Relation Type Definition

The last doubly iinked list contains the components of a string to represent an

event to the user in English (see Figure 34).

Head

BGHeade BGHeade BGHeade BGHeade GHeader i i Null

Null I I IJ

Figure 34: Battle Group Header List

It is used as a convenient way to show the string representation of the event list.

For example, the event list is displayed to the user as shown in Figure 35. This list is made

up of structs containing the string equivalent of the BGEvent list. It is used instead of

traversing the BGEvent list and generating string equivalents for each event each time that

the event list would be displayed on a panel.

44

Figure 35: BGLCSS 2.0 Event List Panel

Figure 36 shows the BGHeader Type definition for the header structs in the

header list.

struct BGHeader(
struct BGHeader *Prev,

*Next;

BGEventType EType;
int Index;

int DTG;
char Date[DTGLENGTH);
char Title[MAXLENGTH];
float Course;
float Speed;

typedef struct BGHeader BGHEADER;

Figure 36: Battle Group Header Type Definition

45

E. BGLCSS 2.0 LIBRARY DESIGN

The application library design refers to the functions written to operate on the data

structures in the BGLCSS application. There are three groups of ft'nctions based on the

kind of data involved: battle groups, ships, and events.

Table 3 shows the function name and purpose for each function that operates on battle

groups. These functions are contained in bg. c in Appendix B.

Table 3: BATTLE GROUP FUNCTIONS

Function Purpose

CancelBG Clears out data from the text keyin items on BG panels BGData and New BG
panels.

DeleteBG Deletes a battle group from the array by replacing its name with blank spaces.

GetBG Using the string representation of the name of a battle group and the index to
the appropriate battle group in the array, return the index to the battle group.

GetBGs Given the battle group array, this function gets the battle group data from the
battle group data ASCII text file. Returns the next available battle group in-
dex. Given the battle group array, this function gets the battle group data

GetShip Using the string of a ship name and the index to the appropriate battle group.
this function returns the ship index for the appropriate ship.

MakeBG Makes a new battle group, using information provided by user to New BG
panel. The index for the next available battle group in the array is returned.

SaveBGs Saves all battle groups to the ASCII text file containing BG data.

SaveNewBG Saves the new battle group using the TAE Vm target object from the user in-
put panel. First, GetBGs is called, returning the available index to the array.
Next. Make BG is called and then SaveBGS saves all battle groups.

ShowBG Shows the battle group's data given battle group array, index and panel name.

ShowBGs Shows the list of battle groups from an ASCII text file to an item in a panel.

Table 4 shows the function name and purpose for each function that operates on ships,

These functions are also contained in bg.c in Appendix B.

46

Table 4: SHIP FUNCTIONS

Function Purpose

AddShip This function adds a ship and its data to a battle group. The ship list
presented to the user contains both the hull number and the ship
name. The hull number is required to get the ship type for the appro-
priate F76 information. The ship name is returned.

ConvertTypeCombatant Converts an integer to the appropriate string representation of Type-
Combatant. C stores the value of an enumerated type on an ASCII
file as an integer. To display this value in a panel, it must be convert-
ed to a string.

GetF76Table Gets the F76 information by ship type from the ASCII text file into
memory.

GetShip Using the string of a ship name and the index to the appropriate bat-
tle group, GetShip returns the ship index for the appropriate ship.

SaveBGShips Using the BG array and the index to the specific battle group, this
function saves the battle group's ships' data to an ASCII text file.

ShowBGShips Shows the list of battle group ships, given battle group index, panel
name, and selection list item on panel.

ShowF76 Uses TAE Wpt and Vm functions to display values to the Ship panel.

ShowNavyShips Shows the list of navy ships from ASCII text file to item in panel.

ShowShip Uses TAE Wpt and Vm functions to display values to the Ship panel.

TypeShip Checks the first two characters in a ship's hull number and returns
an integer that equates to an enumerated ship type.

Table 5 shows the function name and purpose for each function that operates on the

three doubly linked lists involved with BGLCSS events. These functions are contained in

BGEventsLib. c in Appendix B.

47

Table 5: BATTLE GROUP EVENT FUNCTIONS

Function Purpose

DeleteBGEvent Given a pointer to the head of the battle group event list and the event to be
deleted, this function deletes the event. Before calling this function with the
Parent Event node pointer, need to call the DeleteChildren function to delete
the associated children.

DeleteChildren This function makes repeated calls to DeleteBGEvent in order to delete all
of the children of the Parent event. Returns the head of the battle group event
list.

GetBGEvents This function reads the battle group event list data from the appropriate
ASCII text file given the index to the battle group array. It returns a pointer
to the head of the battle group event list.

GetParent This functions finds the Parent event with its unique time stamp. If the par-
ent doesn't exist, then it finds the orphan event and returns a pointer to the
event found.

GetRelation This functions finds the Parent event with its unique time stamp. If the par-
ent doesn't exist, then it finds the orphan event and returns a pointer to the
event found.

InsertBGEvent This function takes a pointer to the head of the battle group event list and
a pointer to the newly created battle group event and inserts the new event
into the list based on chronological date time group of the events. Returns
a pointer to the head of the battle group event list.

InsertRelation This function's basic algorithm is virtually the same to InsertBGEvent ex-
cept for the final if-statement assignments and the data type involved.

MakeBGEvent Given the information from an event panel, this function makes a battle
event node and returns a pointer to it. This function is currently designed to
handle only a battle group course and speed change event.

MakeChild This function makes a child event by first calling MakeBGEvent and attach-
ing the child to the appropriate relation node. After a call to this function
is made, need to call, for instance, UnrepCalculations and make the appro-
priate assignments to the event node. Function returns a pointer to the newly
made child.

MakeRelation This functions makes a related-event node used to connect related events to-
gether such as an unrep with its associated stationing events. The parameter
passed is the integer value of the creation time for the parent event (such as
the unrep event). No more than 5 associated events are allowed by this func-
tion. Returns a pointer to the newly created relation node.

48

Table 5: BATTLE GROUP EVENT FUNCTIONS

Function Purpose

MakeUnrep Given a pointer to the newly made event node and the values passed from
the Unrep panel, return a completed unrep event node to be added to the
event list.

SaveBGEvents This function saves the battle group events list given an index to the appro-
priate battle group in the array and a pointer to the head of the battle group
event list. It returns the pointer to the head of the list.

MakeBGHeader This function creates the header to be displayed in the event list panel to the
user. Given the event parameters, return a header node.

GetBGHeaders Given the appropriate index to the battle group array, this function gets the
battle group header information from the appropriate ASCII text file and re-
turns a pointer to the head of the battle group header list. Similar in algo-
rithm to GetBGEvents.

InsertBGHeader This Lnction inserts the ncwly created BGHeader into the Header list given
a pointer to the head of the header list and a pointer to the newly created
BGHeader. It returns a pointer to the head of the header list.

SaveBGHeaders Given an index to the battle group array and a pointer to the head of the
battle group header list, this function saves the header list data to the appro-
priate ASCII text file. Returns a pointer to the head of the header list.

F. PROGRAM INTEGRATION

There are two ways to connect a call to an application library function to the interface

code. If there is only one line of code, i.e. a call to a single function, this line of code can

be inserted at the WorkBench level using the Connection Specification Panel shown in the

previous chapter. This is the best method, because if an item on a panel is changed from an

event-generating item to a non-event-generating item, the source code is overwritten. The

original file is copied to a backup file with a. bak suffix. However, if several calls need

to be made to handle a given TAE event, then the insertion must be made by hand by the

applications programmer. To maximize integration at the WorkBench level, once a

sequence of application function calls within a TAE Plus event handler function are

debugged, a higher-level application function can be written to make the sequence of

49

function calls itself. Thus, a higher-level function call can be integrated at the WorkBench

level.

The TAE Plus documentation suggests that a symbol be used for each alteration to

TAE Plus generated source code so that in the event of code regeneration, a relatively easy

cut and paste operation can be performed. The /*BERN*/ symbol was used in this

application.

TAE Plus uses an Imakef i l e to create an application specific makef i l e which

then correctly compiles and links object files with the appropriate libraries. The

Imakef ile can be edited to include the application library code for compilation. In this

case, the APP flags in the Imakefile for the BGSetup module to be bg. c. See the

Imakefile in Appendix B.

Each panel file must include the pan-name.h files for associated panels as well as

connected panels. Connected panels are already handled by the TAE code generator.

Associations that fall outside of the WorkBench domain must be done by hand. A panel

may be associated with another if, for instance, data from one panel is required to perform

operations initiated by another panel. Although TAE automatically will insert a #include

pan-* . h for connected panels, the application writer must still explicitly include header

files for panels requiring information from a previous panel.

Any application functions used in the pan_* . c files must be declared as external

ahead of the event handling function definition for the particular panel.

G. STRUCTURED DESIGN PROBLEMS

Despite the top-down functional decomposition approach to this application, there are

several problems with this design. The separation of the code and the data is evident in the

separation of the struct and type definitions in bg . h and BGEventsLib . h and the

function libraries in bg. c and BGEventsLib. c. At any point in the main program, a

variable such as a BGlnfo array could be declared and filled with bad data and then saved

50

to the ASCII text file. This vulnerability of the battle group data is a clear weakness of this

design.

Second, while this application does define numerous user-defined types such as the

enumerated types and structs, these definitions amount only to labels that improve program

clarity. They do not prevent illogical operations from being performed such as assigning

bad values to the enumerated types. Furthermore, as previously mentioned, date time

groups and latitudes and longitudes are reduced to built-in data types and poorly represent

real world entities. This data type deficiency led to the GOTS library's long list of

specialized functions as well as to the redundant BGLCSS library functions such as the

InsertBGEvent, InsertBGHeader, etc.

Third, the distributed functionality of this design will make subsequent program

modifications and extensions difficult. For instance, to add another logistics event type

would require changes to be made to every event-related function that contained a case

statement specific to event type.

51

V. BGLCSS 2.0 OBJECT-ORIENTED DESIGN

A. CLASSES

This chapter provides a high-level view of how BGLCSS 2.0 could be designed using

an object-oriented paradigm in C++. We intend to provide examples of how the use of an

object-oriented paradigm, when correctly applied, leads to code reuse, ease of program

maintenance and extension. Since the arguments presented here are not dependent on low-

level definition details, most class member functions are presented only as prototypes.

Object-oriented design is based on classes and one useful approach to object-oriented

design consists of the following methodology [COPLIEN 921:

(1) Identify the entities in the application domain.

(2) Identify the behaviors of the entities.

(3) Identify the relationships between entities.

(4) Create a C++ design structure from the entities.

According to step (1), the entities in the application domain are battle groups, ships,

and logistics events. Step (2), the identification of the behaviors of the entities is listed in

Table 6. The behaviors of the battle group entity are limited to getting, setting, adding, and

deleting subcomponents. The ship entity, in addition to these behaviors, consumes and fills

up with F-76, F-44, and ordnance commodities. Events, shown as a high-level abstraction

of all twelve events, includes a computation behavior called ProcessEvents which performs

calculations of the F-76, F-44, and ordnance states of ships in a battle group.

52

Table 6: SAMPLE BEHAVIORS OF BGLCSS ENTITIES

Battle Groups Ships Events

GetBGName GetShipName GetEventList

GetBGlndex GetShiplndex SaveEventList

GetBG GetShipData AddEvent

SaveBG SetShipData DeleteEvent

GetBGShips GetShipLocation GetEvent

SaveBGShips SetShipLocation ProcessEvents

AddBGShip GetShipF76

DeleteBGShip SetShipF76

GetBGLocation GetShipF44

SetBGLocation SetShipF44

GetBGResults GetShipOrdnance

SetBGResults SetShipOrdnance

GetShipAcft

SetShipAcft

ConsumeF76

ConsumeF44

ConsumeOrdnance

FillF76

FiUF44

FillOrdnance

Step (3), identifying the relationships between entities, is probably the most crucial

step of the design process. First, the battle group exhibits a has a relationship with its ships,

settings, location, and results. This relationship can be modeled with

composition.Therefore, an array of Shiplnfo class objects, a SettingsInfo class object, a

Location Info class object, and an array of CapacityInfo class objects can be contained

53

within a BGInfo class object. Second, the ShipInfo class can be modeled based on an is a

relationship with all of the special cases of a ship: destroyer, frigate, aircraft carrier, etc.

Finally, events, at this level of abstraction, involve a uses a relationship because, when the

ProcessEvents behavior is performed, it requires the use of Shiplnfo objects. At the level

of specific events as in the case of Unrep and Consol events, both of these events involve

a creates a relationship with SetStation events.

Step (4), a C++ design structure for each of these entities, is presented in detail.

1. Battle Group Class

A real world Navy battle group is characterized by its name and designation, a set

of ships, and, for the purposes of the BGLCSS simulation program, a collection of trip-wire

settings. The decision to design the battle group class using composition is based on the has

a relationship that describes the real world battle group entity. The battle group has a set of

settings, a location, a set of ships and a set of calculation results. With composition, all of

the data and functions of the first class are reused in the second class. For example, all of

the Locationinfo class data and function members are used in the BGInfo class as well as

reused again in the Shiplnfo class discussed later. This reuse is similar to the nesting of the

LocationInfo struct within the BGlnfo and ShipInfo structs in the structured design

described in chapter IV except that the functions, as well as the data, are included.

While the structure of the BGInfo class is similar to its corresponding structured

paradigm struct, its data members can be hidden from outside the class. By declaring them

to be private, they can only be accessed by member functions of the same class. The array

of Shipinfo objects and the Settingslnfo, Locationlnfo, and Resultslnfo C++ classes

compose the BGInfo class as shown in Figure 37.

54

class BGInto
private:

char Narne[MAXNAME];
char Designation[MAXNAME];
ShipInfo Ships[MAXBGSHIPS];
SettingsInfo Settings;
LocationInfo Location;
CapacityInfo Results[MAXBGSHIPS];

public:
BGInfo();
BGInfo(char* N, char* D, SettingsInfo* S)
-BGInfo();

void SaveBGShips(ShipInfo S);
friend BGInfo& CalculateF76(BGEvent&, int i);
void ShowBGShips(int i);
void ShowBG(int t);
int SaveNewBG(BGInfo B);
void CancelBG(Id I);
int GetBG(int i);
int AddBGShip(int i, ShipInfo* S);
int DeleteBGShip(int i, ShipInfo* S);
LocationInfo* GetBGLocation(int i);
int SetBGLocation(LocationInfo* L);
CapacityInfo GetBGResults(int i);
int SetBGResults(CapacityInfo C);1;

Figure 37: Battle Group Data and Function Members

The choice to keep the array as the data structure to contain the ships and battle

groups was made for simplicity. The array of battle groups, i.e. the array of BGLnfo objects

is shown in Figure 38.

class BGArray I
private:

BGInfo BG[MAXBGS];
public:

BGArray);
-BGArray);
void SaveBGs(BGInfo B);
void ShowBGs(BGInfo B);
BGInfo GetBGs(;

Figure 38: Battle Group Array Data and Function Members

55

2. Ship Class Hierarchy

Contained within the battle group is the array of ships. The object-oriented ship

class is shown in Figure 39. It is a classic example of a single inheritance class hierarchy.

There are five main classes derived from the ship base class: Destroyer, Frigate, Cruiser,

Aircraft Carrier, and CLF Ship. CLF Ship is further divided into Ammunition ship, Fleet

Oiler and Combat Support Ship. Finally, at the ends of the ship class tree are the specific

ship types such as DD963, FFG7, etc. This hierarchy is based on the Navy's notion of ship

class which is based on ship architecture and ship mission. BGLCSS, however, is driven

by the ship type differences in F-76 and F-44 fuel, and ordnance attributes. For instance,

the F-76 fuel capacity and F-76 ship fuel burn rate is dependent on the Navy ship class

such as the DD963 destroyer class. As far as BGLCSS 2.0 is concerned, this makes all of

the calculations of commodity use far simpler to modify and extend.

Ship

yet~ Frigat 017se Aicaft 8 AEAQ

Figure 39: Ship Class Hierarchy

The base class, ShipInfo class, as shown in Figure 40, contains protected data

members and public member functions, some of which have been declared virtual. Base

class access determines how the derived class receives inherited members.

56

class ShipInto
protected:

enum CLFType (Air, Combatant, Station,Shuttle);
enum ShipType(Destroyer, Frigate,Cruiser, AcftCarrier,
CLFShip);
char Name[40];
char Hull[1O];
CLFType TypeCombatant;
LocationInfo Location;
F76Info F76;
F44Info F44;
int Approach,

BreakAway;
OrdInfo Ord;
AcftInfo Acft;

public:
ShipInfo); //constructor
virtual -ShipInfo();//destructor
int GetShip(int t, char* c);
virtual int GetShipType(ShipInfo s, int i)-
virtual int SetShipType(ShipInfo s, int i);
virtual int SetCLFType(ShipInfo s, int i);
virtual int GetCLFType(ShipInfo s, int i);
virtual int SetF76Info(ShipInfo s, int i);
virtual int GetF76Info(ShipInfo s, int i);
char* GetShipNamp(int i);

class DestroyerInfo : public ShipInfo
protected:

enum DestroyerType(DD963, DD51);

DestroyerType DType;

public:
int GetShipType(DestroyerInfo s, int i);
int SetShipType(DestroyerInfo s, int i);
int SetCLFType(DestroyerInfo s, int i);
int GetCLF'I'ype(DestroyerInfo s, int i);

class DD962Info : public DestroyerInfo
public:

int GetF76Info(DD963Info d, int i);
int SetF76Info(DD963Info d, int i);

//other commodities are similar
int ConsumeF76(int i, F76Info f);
iIIt FillF76(int i, F76Info f);

//other commodities are similar

Figure 40: Ship Class Data and Function Members

Class access is public for the Destroyerlnfo class. This means that the base class's

protected members remain protected (inheritable, but still hidden from the rest of the

program) and the public members remain public. The same is true for the class access of

57

the DD9631nfo class. Destroyerlnfo class access is public for the DD963Info class. The

member functions in this last class are the appropriate place for the DD962 specific

commodity values to be initialized. These member functions were made virtual in the

ShipInfo base class so that they could be tailored for each bottom-level ship class such as

DD963. The ship-specific enumerated types were encapsulated within the specific class

that they are relevant. By contrast, in the structured programming design, the enumerated

types are global to the program.

3. Logistics Events Class Hierarchy

The logistics event classes are the most challenging to design of the BGLCSS

classes. When the entities were identified in the BGLCSS application domain, the event

list, events in general, and the twelve specific types of logistics events were discussed in

general terms. At this point in the analysis, it is possible to make several class designs. We

will discuss two specific designs, the first of which is shown in Figure 41.

S~BGLCSS
Event

Ordanc Fuel

Figure 41: BGLCSS Event Class Hierarchy With Twelve Derived Classes

First, the twelve BGLCSS logistics events could placed in a class hierarchy where

there is one abstract base class from which all twelve logistics event classes are derived.

58

I ~Cno ITIhreIIat!I

Although an end user might visualize the twelve BGLCSS events in this way, a

class hierarchy of this design does little to support code reuse. This is because, when

describing the entity behaviors or fanctions in detail as outlined in step (2) of the object-

oriented programming paradigm methodology, the patterns shown in Table 9 become clear.

Table 7: BGLCSS EVENT COMMON FUNCTIONS

Affects F-76 Level Affects F-44 Level Affects Ordnance Level

BGCourseSpeed Yes

SetShipStation Yes

ShipCourseSpeed Yes

FuelTransfer Yes Yes

AAW1'hreatLevel Yes

Strike Yes

Unrep Yes Yes Yes

Coiisol Yes Yes Yes

ASWThreatLevel Yes Yes

Raid Yes Yes

OrdnanceTransfer Yes

ASW Prosecution Yes

Each of these events affects a different combination of the F-76, F-44, and

ordnance commodities and would require duplicated code regarding the calculations of

commodity levels.

At this point, it is useful to draw a distinction between the problem domain and

the program domain. The problem domain refers to the real world problem that the

software is intended to solve. In contrast to the structured programming paradigm, the

object-oriented programming paradigm focuses on closely mapping 6te entities in the real

world, the problem domain, to entities in software. The program domain differs from the

59

problem domain in that it represents the programming language, operating system, and

programming paradigm.Writing a program consists of building a solution within the

program domain to solve a problem in the problem domain.

The most straightforward approach is to first solve the problem within the

problem domain, then construct a model of the problem domain within the program domain

and map the solution over. The more explicit the model, the more obvious the mapping and

the easier it becomes to write and understand the resulting program. [DAVIS 921. Since the

problem domain of BGLCSS is to generate percent capacity states for F-76, F-44, and

ordnance for ships and battle groups, this distinction was used to determine whether

clusterings of similar event behaviors was present. Table 7 clearly shows that there are

common behaviors/functions among the events.

The solution to designing a class hierarchy that promotes code reuse involve

multiple inheritance. Multiple inheritance permits a class to be derived from two or more

base classes. With this kind of construction, class relationships become much more

involved than with single inheritance. Under single inheritance, the inheritance hierarchy

is a tree; under multiple inheritance, the hierarchy is a directed acyclic graph. Cargill makes

a distinction between synthetic and natural classes. Synthetic classes do not correspond to

abstractions found in the application problem domain. Synthetic classes emerge during

design and coding of a system in response to internal, synthetic needs of the software. This

is in contrast to natural classes, those that correspond to abstractions from the problem

domain and typically arise either during analysis or early design. A simple criterion is to

ask end users if they recognize the abstraction. Because a natural class comes from the

problem domain, an end user will understand its purpose; a synthetic class arises only from

software implementation considerations, so the end user will not appreciate the need for it

[CARGILL 921.

The BGLCSS 2.0 event classes are more complex than the ship classes because,

iH order to maximize reuse of class member functions, multiple inheritance is necessary.

Instead of a tree structure as in the ship classes, the event class is a directed acyclic graph,

60

where the classes lower on the tree inherit from the classes connected above them. This

design decision is based on the common denominators of the logistics events, in other

words, these events either affect F-76, F-44, or ordnance, or a combination of these. There

are no is a relationships. The class hierarchy is just a convenience to reuse code,

particularly the member functions of the commodity affecting classes. There is no domain

specific relationship.

i Logisticsc
Event

S ta tio n F e P ros e c

I& SpeedI

Unrep /

Figure 42: Logistics Event Class Hierarchy With Three Synthetic Derived Classes

The C++ class definition for the logistics event class is provided in Figure 43. The

enumerated types specific to the events are encapsulated within the abstract base class

BGEvent.

61

class BGEvent J
protected:

enurn BGEventType (BGCourseSpeed, ASWLevel, AAWLevel,
SetStation, ShipCourseSpeed, Unrep, Consol,
FuelTransfer, OrdTransfer, RaidEvent, StrikeEvent,
ASWProsecute, ResumeBGCourseSpeed, Other);

enum PredictType (Orphan, Child, Parent,Interval);

enum ThreatType (Low, Med, High, Raid, Strike, Asw);

enum CalcType fOrd, F76, F44, BothFuel, All);

BGEvent *Prev,
*Next;

int DTG,
Index,
Created,
PredictInterval;

BGEventType EType;
PredictType PType;
CalcType CType;
DirectionInfo Direction;

public:
BGEvent 0;
-BGEvent);

class F76Event : public BGEvent
public:

friend BGInfo& BGInfo::CalculateF76(BGEvent&, int i);
1;

class Unrep : public F76Event
public:

UnrepInfo UnrepData;

Figure 43: BGEvent Class Data and Function

Whereas in the BGInfo struct in the structured programming design described in

chapter IV contained the UnrepInfo, ThreatType, Strikeinfo, Raidlnfo, and ASWInfo

structs, they are omitted from the BGlnfo abstract base class. Instead, these objects are

contained only in the appropriate bottom level class objects. For instance, the UnrepInfo

object would be contained in the Unrep class only. This design is more representative of

the real world entities and makes future modifications and extensions easier to perform

because all of the underway replenishment data and functions are localized to the one class

where this information is relevent.

62

When a function manipulates objects of two distinct classes, the function can be

made a friend function to both classes. This is what is done with the CalculateF76 function

which illustrates the uses a relationship between the BGEvent class and the BGInfo class.

"This function was made a friend to both classes.

As far as code reuse is concerned, with C++ version 2.1, the events classes

discussed so far provide only limited code reuse when considering that the BGLCSS

application has three doubly linked lists, each performing insertion, deletion, search, etc.

Using this event hierarchy as is would involve creating three classes for each of the doubly

linked lists. Each of these data structures could only handle specific objects. To capture

maximum code reuse for the logistics events and list operations in BGLCSS, a feature

supported in C++ 3.0 is needed. Templates provide a solution to this code duplication

problem. Template classes model generic objects that provide similar operations for

different data types. By using a template class, as shown in Figure 44, a generic double

linked list can be instantiated for pre-defined and user-defined types.

template <class T>
class List (

protected:
struct Node

T Data;
Node* Prev;
Node* Next;

Node *Nodeptr;

Node *Headptr;
public:

List ();
-List (;
virtual InsertNode(T);
virtual DeleteNode(T& node);
virtual SearchNode(T& node);

Figure 44: BGLCSS Template List Class

In BGLCSS, we could instantiate three List classes using the three different

objects: BGEvents, BGHeader, and Relation. Then, from the BGEvents abstract base class,

63

the synthetic commodity affecting classes would be derived. Finally, the twelve logistics

events would be derived from the appropriate set or sets of synthetic commodity affecting

classes

B. SYMBOLIC CONSTANTS

Instead of using the preprocessor directive #define to define program constants and

string literals, C++ and ANSI C provide const to reserve storage for data that is read-only

as shown in Figure 45.The drawback to using #define is that is does no type checking.

Any value can be given to #define without regard to proper type checking. The lack of

proper type checking is one of C's weaknesses that can pose enormous problems for the

programmer when trying to trace bugs in code.

const int MAXNAME

cons: in: MAXF76COEF
const in: MAXSHIPTYPES = 8;
cons: in: MAXORD = 100;
cons: in- MAXACFT = _(;

const int MAXTHREATLEVELS = 2;
cons: in[MAXINTERVALS = 3;
cons: in: MAXENGAGEMENTS ='

const int HOURSINDAY = 23;
const in: MAXUSETYPES =
const in: MAXBGSHIPS = 30;

const in MA.XBGS = 10;
cons: int MAXORD = -or;

const int MAXSHIPS i0k,;
const int DTSLENGTH =

cons: int MAXLENGTH = 2,
conlst chatr F76DATA [I "i/- csscripts'daraFt F7da:;

conrst chat BGDATAI = "/hilhgcssiscr if-t/dara/2GData.dat";
const char BGSHIPS[] ",/h, /L,:ssc- ript_/'data'Ships";

-onst char NAVYSHIPSI] = "/hilcss~scripto/data/Na''h cd"
coi st chat EVENTSEATA, " "'hbI5c c: i :- do, a EI'ent:d";

Figure 45: Symbolic Constants for Battle Groups and Ships

C. OBJECT-ORIENTED DESIGN BENEFITS

This description of object-oriented mechanisms when applied to the BGLCSS

application domain, provided examples of ease of modification, extension, and code reuse.

Ease of modification and extension are the natural by-products of a class structure where

64

data and function are encapsulated. The program is easier to modify because the data and

functions are not separate and instead would work together. The clutter of the similarly

named functions such as InsertBGEvent, InsertBGHeader, and InsertRelation would be

replaced by the use of polynorphism where the respective object is sent a message such

as Insert.

The ShipInfo class hierarchy that derived specialized classes for each Navy ship class

such as DD-963 provided a better way to perform Navy class-specific commodity

information.

Code reuse was to a limited extent accomplished with the use of synthetic classes in

the BGEvent class hierarchy. A more substantial degree of code reuse could be achieved

by using a list template class for all three of the inked list structures.

65

VI. CONCLUSION AND RECOMMENDATIONS

The structured and object-oriented designs of the same program, BGLCSS 2.0, were

presented and the merits of the application of each paradigm were discussed. It is clear that

there are numerous technical benefits to using an object-oriented programming paradigm

instead of a structured programming paradigm for systems expected to evolve over time.

There is little doubt that Command, Control, and Communications (C3) applications such

as the BGLCSS tactical decision aid will be refined and extended as battle group

coordinators use the system and identify additional components to be added or existing

ones to be changed. In fact, one thesis currently being developed by an Operations Research

Department student at the Naval Postgraduate School involves a modified version of the

underway replenishment event within BGLCSS.

The initial drawback to moving to an object-oriented programming paradigm can be

characterized as the trade-off between long-term planning and design versus short-term

production gains. At the beginning of a move to an object-oriented approach, a substantial

amount of time is required to study the paradigm and produce an overall design for the

classes and their hierarchies in the application. By contrast, accepting the status quo and

remaining within a structured programming paradigm requires no extra effort. In a world

of time constraints, decisions are frequently made to quickly produce a software application

prototype and delay concern about modification and extension until a later time. While this

reasoning has dominated many software development projects, it is recommended that

organizations such as the Navy Space and Warfare Command which is in charge of

managing large software systems pursue moving towards adopting an object-oriented

paradigm in the future. The long-term benefits outweigh the short-term benefits. It is also

recommended that NTCS-A applications programmers consider using TAE Plus to build

their graphical user interfaces instead of using low-level Motif functions. A high-level tool

such as TAE Plus greatly reduced BGLCSS graphical user interface development time.

66

APPENDIX A. BGLCSS 2.0 GRAPHICAL USER INTERFACE
PANELS

Figure 46: BGLCSS 2.0 Set Up Battle Groups Initial Panel

Figure 47: BGLCSS 2.0 New Battle Group Data Panel

67

Figure 48: BGLCSS 2.0 Battle Group Data Panel

68

.lO'

.... .a .i.a

Figure 49: BGLCSS 2.0 Battle Group Ships PanelI l &

Figure 50: BGLCSS 2.0 Ship Logistics Panel

69

Figure 51: BGLCSS 2.0 Ship F-76 Fuel Panel

"70

Figure 52: BGLCSS 2.0 Ship F-44 Fuel Panel

Figure 53: BGLCSS 2.0 Select Ordnance Panel

71

Figure 54: BGLCSS 2.0 Ordnance Load Panel

.. i

-- -- ------------

Figure 55: BGLCSS 2.0 Ordnance Data Panel

72

&•-J .m.......i .-

Figure 56: BGLCSS 2.0 Aircraft Load Panel

..ml m .I/

Figure 57: BGLCSS 2.0 Aircraft Data Panel

71

un

(A

LL

74

Figure 59: BGLCSS 2.0 Battle Group Course and Speed Panel

Figure 60: BGLCSS 2.0 ASW Threat Level Panel

75

Figure 61: BGLCSS 2.0 AAW Threat Leve: Panel

Figure 62: BGLCSS 2.0 Set Station Panel

76

Figure 63: BGLCSS 2.0 Station Results Panel

Figure 64: BGLCSS 2.0 Ship Course and Speed Panel

77

...

Figure 65: BGLCSS 2.0 Underway Replenishment Panel

Figure 66: BGLCSS 2.0 Underway Replenishment Results Panel

78

Figure 67: BGLCSS 2.0 Consol Panel

Figure 68: BGLCSS 2.0 Consol Results Panel

79

I I I I I I I I

•i_-- • •m -- I i .•

N

.•lmm

I• [•i

Figure 69: BGLCSS 2.0 Fuel Transfer Panel

S• • •m L•__

d,,- iimlai
"" •[I El "-•

-- .ll Iilmmi•

••

Figure 70: BGLCSS 2.0 Select Ordnance Panel

80

i•lniiummm • I nlll/ imlliln I

Figure 7 1: BGLCSS 2.0 Ordnance Transfer Panel

Figure 72: BGLCSS 2.0 Raid Panel

[._"l

Figure 73: BGLCSS 2.0 Raid Ships Panel

-- .- ., --l q

Figure 74: BGLCSS 2.0 Strike Panel

82

Figure 75: BGLCSS 2.0 Strike Ships Panel

Figure 76: BGLCSS 2.0 ASW Panel

83

Figure 77: BGLCSS 2.0 ASW Ordnance Panel

Figure 78: BGLCSS 2.0 Select BG Ship Panel

84

Figure 79: BGLCSS 2.0 Select Ship Aircraft Panel

"Figure 80: BGLCSS 2.0 Select Summary Report Panel

85

Figure 8 1: BGLCSS 2.0 Battle Group Shuttle Requirements Report Panel

Figure 82: BGLCSS 2.0 Commodity List Panel

86

Figure 83: BGLCSS 2.0 BG Summary By Single Commodity Panel

Figure 84: BGLCSS 2.0 Battle Group Selection Message Panel

87

L*

Figure 85: BGLCSS 2.0 Ship Selection Message Panel

Figure 86: BGLCSS 2.0 Insufficient Data Message Panel

Figure 87: BGLCSS 2.0 Print Job Message Panel

88

Figure 88: BGLCSS 2.0 Incorrect DTG Format Message Panel

Figure 89: BGLCSS 2.0 Incorrect Lat/Long Format Message Panel

Figure 90: BGLCSS 2.0 Close All Events Panels Message Panel

89

Figure 91: BGLCSS 2.0 New BG Data Saved Message Panel

Figure 92: BGLCSS 2.0 Event List Panel

90

Figure 93: BGLCSS 2.0 Sample Help Panel

Figure 94: BGLCSS 2.0 Overview Initial Panel

91

APPENDIX B. BGLCSS 2.0 C PROGRAM LISTING

Files Common to BGSetup and BGEvents modules:
bg.h
bg.c
BGEventsLib.h
BGEventsLib.c
global.h
paiuWptHelp.c
panWptHelp.h
wpthelp.c
wpthelp-creat-initxc
wpthelppjnit-pan.c

Files Specific to BGSetup:
BGSetup.c
BOSetup-creat -init~c
BGSetup-nit~pan.c
Imakefile
pan -BGData.c
panjBGData.h
panBGShips.c
pan-BGShips.h
panCIoseAl1.c
pan-CloseAll.h
pan-DetBG.c
panDeIBG.h
panDtg.c
panDtg.h
panLackDataxc
panLackData~h
panNewBG.c
panNewBG.h
panSaveNewB.c
pan..SaveNewB.h
panSe[BG.c
panSelBG.h
panSetUpBGs.c
pan-SetUpBGs.h
pan,..Ship.c
panShip.h

Files Specific to BGEvents module:
BGEvents.c
BGEvents-creat-initxc
BGEventsjinit-panxc
Imakefile
panBGCrsSpd.c
panBGCrsSpd.h
panBGEvents.c
pan_.BGEvents.h

Files Specific to Overview module:
Overviewxc
Overview-creat-injitc
Overview-init-panxc
pan Overviewxc
PnOverview.h

92

*Author : Bernadette C. Brooks
*Office : Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-2180
*Project
*Advisor : Dr. C. Thomas Wu
* Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-3391
*Filename : bg.h
*Date : 27 Feb 93
*Content : C manifests, data type definitions, and data
* structure definitions for all of BGLCSS 2.0
*Note : "global.h" TAE-generated file includes bg.h

*/

#include <stdio.h>
#include <stdlib.h>

#define MAXNAME 25
#define MAXF76COEF 3
#define MAXSHIPTYPES 8
#define MAXORD 100
#define MAXACFT 20
#define MAXTHREATLEVELS 2 /* Low, Medium, High */
#define MAXENGAGEMENTS 2 /* Raid, Strike, ASW */
#define MAXINTERVALS 3
#define HOURSINDAY 23
#define MAXUSETYPES 5
#define MAXBGSHIPS 30
#define MAXBGS 10

#define MAXORD 100
#define MAXSHIPS 100
#define DTGLENGTH 15
#define MAXLENGTH 25

#define F76DATA "'/hbglcss/scripts/data/F76.dat"
#define BGDATA "/h/bglcss/scripts/data/BGData.dat'
#define BGSHIPS "/h/bglcss/scripts/data/Ships"
#define NAVYSHIPS "/h/bglcss/scripts/data/NavyShips.dat"
#define EVENTSDATA "//bbglcss/scripts/data/Events"
#define HEADERS DATA "'/hbglcss/scripts/data/Headers'-

/** * ******* ***l •***** *** * *** •* * 1*** •*** * * *** .* * * •*** *** ** . *** ** ** *1.

enum CLFType
Air,
Combatant,
Station,
Shuttle

typedef enum CLFType CLFType;

93

enum AcftType I
F14,
FA18,
A6,
EA6B,
E2

typedef enum AcftType AcftType;

typedef struct
int Capacity,

ReceiveRate,
TransferRate,
OnHand,
EstOnHand.
Dtg:

float Coef[MIAXF76COEF],
}F761nfo,

typedef struct
int Capacity,

ReceiveRate,
TransferRate,
OnHand,
EstOn~land,
Dig;

I F441nfo,

typedef structf
int Dtg;
float Speed,

MaxSpeed;,
double Latitude,

Longitude,
Course;

I Location Info;

typedef structI
int Quantity[MAX1JSETYPES]:

I OrdUse;

typedef struct
char Name[MAXNAME];

I OrdName;

94

typedef structI
OrdName Name[NMAXORD];
int TotalNumber,

Capacity[(MAXORD),
* ~Range[NMAORD],

TransferRate IMAXORD],
OnHand[NMAORD],
EstOnHand[MAXORD],
OnHandDtg[MAXORD],
Est~nHandDtg[MAXORDI;

OrdUse UseRate[MAXORD];
I Ordlnfo:,

typedef struct
AcftType AType;
int NumberAcft,

FuelBumnedSortie,
MaxSortiesDay:,

int SortieRate[MAXTHREATLEVELSI;
int NumSorties[MAXENGAGEMENTS],

AcftRecord;,

typedef structI
int SortieFlown [HOURS UNDAY 1;
AcftRecord Wing[MAXACFIT]

IAcftlnfo;

typedef struct
char Name[40];
char HullilO]:
CLFrype TypeCombatant;
LocationInfo Location;
F761nfo F76-,
F44Info F44;
int Approach.

BreakAway:
Ordinfo Ord;
Acftlnfo Acft;,

I Shiplnfo:

typedef struct
char ShipTypef 101;
int F76Capacity,

F76Receive.
F76Transfer;

float CoefIMAXIF76COEF];,
I F76ShipType Info:

95

typedef struct
float FuelRes.

CLFFuelRes.
OrdRes,
CLFOrdRes,
MaxF76,
MaxF44.

StationS peed.
UnrepSpeed.
AcftShipSpeed,

int PredictStart:
int PredictHours[MAXINTERVALIS:

I Settinigsinfo;

typedef strucK I
int TotalNumber:,

)OrdCaplnfo-;

typedef structl
float F76CapacityfI I AXLNTERVALS].

F44Capacity[MAXINTRVALSj;
OrdCaplnfo OrdCapacity[Iý LAXINTERVALS]:

ICapacity Info;

typedef structI
char Name[MAXNAME]:,
char Designation!MAXNAME];
Settingslnfo Settings;
LocationInfo Location-,
Shipinfo Ships[MAXBGSI-IPSIJ;
Capacitylnfo ResultsNIMAXBGSHIPSJ:

IBGlnfo;

96

*Authtr Bernadette C. Brooks
*Office Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-2180
*Project
*Advisor : Dr. C. Thomas Wu
* Computer Science Department
* Nava, Postgraduate School
* Monterey, CA 93943
* Phonu: (408) 656-3391
*Filename : bg.c
*Date : 27 Feb 93
*Content : Bodies of user-defined functions to represent battle
* groups and ships. C manifests contained in bg.h
*Note : 'global.h" TAE-generated file includes hg.h

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

/*TAE system include files*/
#include "taeconf.inp"
#include "wptinc.inp'
#include "symtab.inc"
#include "parblk.inc'"
#include "terminc.inc"
#include "global.h"

"* Convert an integer to the appropriate string representation of
"* TypeCombatant. C stores the value of an enumerated type in an
"* ASCII file as an integer. To display this value in a panel, it must be
" converted to a ,tr'it.

char* ConvertTypeCombatant (Integer)

int Integer,

char TempStringIMAXNAMEI;

switch (Integer)

case 0:
strcpy(TcmpString, "Aviawion");
break,

case I:
strcpy(TempString, "Combatant"):
break;

case 2:
,trcpy(TempString, "Station CLF");
break;

case 3:
strcpy(TempString, "Shuttle"):
break;

default:

97

strcpy(TempString, "unknown");

return(TempString);

'* * * *** ** ** ** * * **** ** •**** ** ***** ** *** ** ** *** * ****** ** ** ***

* Convert an integer to its appropriate string representation.
* UNIX K & R C library does not contain this kind of function.
* DOS C does. It is needed for I/O to tIhe ASCII text fides containing
* ship, battle group, and event information.

char* lntToString(i)
int i;

sw!ch(i)l
case 0:

retum("0"): break:
case 1:

return(" 1"); break:
case 2:

retum("2"); break;
case 3:

return("3); break:
case 4:

return("4"): break;
case 5:

return("5"); break;
case f-"

return("6"); break;
case 7:

return("7"); break:
case 8:

retum("8"); break:
case 9:

retumr("9"); break;
case 10:

return(" 10"); break;
default:

retum(" I I");

* Using the string of a ship name and the index to the appropriate battle
* group, GetShip returns the ship index for the appropriate ship.

*/

int GetShip(Name, i)
char Naune[MAXNAMEJ:
int i:

char FileName[80];
FILE* DataFile;
char SuffixfMAXNAME];
TEXT* temp[MAXBGSJ:
char Cmd[MAXNAMEI:
int s;
char buf[101;

98

int Found-,

strcpy(FileName. BGSHLIPS):,

strcpy(SuffixjlntToString(i)),

strcat(Suffix. ".dat"):,

strcat(FileNamne, Suffix);

DataFile = fopen(FileName. "r");

while (feof(DataFile))

fscanf(DataFile,"%[A\n]\,n", Cmd),
s = 0;

/*skip over all ship info*/
for (s =0, s< 13: s++) I

fscanf(DataFile."%s\nf. buf);

if (strcmp(Naine.Cmd) 0)(
Found= 1,

Ielsel

fclose(DataFile);

if (Found ==01
return(- 1);

)elsel
return(i);

*This function uses TAE functions to display values to the Ship panel.

void ShowShip(Panel View. Panelld, BGs. i, s)
Id PanelView.

Paneild:
BGlnfo BGs[MAkXBGS];
int i,

TEXT* namne[l11:
TEXT*~ hull[IlI-

Astrcpy(nwnle[01.BGs i].Ships[sl.Narne):,
Vm_-SetString(PanelView.'ShipName.textstrs". 1 .name.P UPDATE);
Wpt...ViewUpdate(Panelld."ShipNamne", Panel View,"ShipNarne");

strcpy(hul I O] ,BGsfi].S hips[ls].HulI)-,
Vm_-SeStruing(PanelView,"Hull.textstrs", Lhull.P UPDATE);
Wpz.ViewUpdate(Panelld."Hull". Panel View,"HuII');

99

strcpy(name[0I,BGs[i] .Name);
Vm_SetString(PanelView,"BGName.textstrs", 1 .name.PUPDATE);
Wpt-ViewUpdate(Panelld."BGName", PanelView,"BGName");

strcpy(name[0I.
ConvertTypeCombatant(BGs~i] .Ships[sJ .TypeCombatant));

Vm_ SetString
(PanýelView."TypeCombatant.textstrs". 1,name.P -UPDATE);
Wpt-ViewUpdate(Panelid,"TypeCombatant".
Panel View,"TypeCombatant");

strcpy(name[Ol~drg_to-a(BGs~iI.Shipstsl.Location.Dtg)).
Vm_-SetString(PanelView."Dtg.textstrs".1,nameJUUPDATE);
Wpt-ViewUpdate(Panelld."Dtg". Panel View."Dtg");

Wpt-Setlntg(Panelld, "Approach", 20);
WptLSetIIntg(Panelld, "BreakAway",1O);

*This function uses TAE functions to display values to the Ship panel

void ShowF76 (BGs, i, s, Panelid, Panel View)
BGlnfo BGs[MAXBGS];,
int s;
Id Panelld,

Panel View;,

TEXT* naine[1J;
TEXT* estonhand[1J;
TEXT* estdtgtlJ;,

strcpy(name[0]. BGs[i].Shipslsl.Name):

VmSetString(PanelView. "Name.textstrs". 1. name, P - PDATE);
WpL-ViewUpdate(Panelld. "Name", Panel View, "Name");

Wpt-Setlntg(Panelld, "Onfland". BGsjiI.Shipsjsj.F76.OnHand);
Wpt-Setlntg(Panelld, "Capacity", BGs[i].Shipslsl.F76.Capacity);,

/*notf implemented yet*/
/*VmSetString(PaInelVjew, "EstOnHand.textsurs". 1.
estonhand. PUPDATE);
Wpt-ViewUpdate(Panelld, "EstOnHand". Panel View, "EstOnHand');*I

/*need to convert date integer to string representations first*/
/Not implemented yet*/
/*VmSetString(PanelView, "EsED~g.textstrs", 1, estdtg, P _UPDATE);,
Wpt-ViewUpdate(Panelld, "EstDig". PanelView, "EstDtg");,

/*not implemented yet*/
/*Wptsetlntg(Panelld, "ReceiveRate",
BGs~i].Ships~sl.F76.ReceiveRate);
Wpt-Setintg(Panelld.

100

"TransferRate".BGs[il.Shipslsl.F76.TransferRate);,

* Using the BG array and the index to the specific battle group. this
* function saves the battle group's ships' data to an ASCII text tile.

void SaveBGShips(BGs,i)
BGInfo BGsIMAXBGSII;
mnt

char FiIeNarne[lOO]:
char Suffix[MAXNAME];,
static blank[MXNAMEI;
FILE* DataFile;
int s;
mnt Index,
static char Cmd[I001;

s = 0:

/*Based on BG Index, create appropriate file name for BG ships. Ex:
For ships in BGs[OJ. filename is /htbgIcss/scripts/data/Ships0.dat*/

strcpy(FileName. BGSHIPS):
strcpy(Suffix,lntToString(i));
strcat(Suffix. ".dat");,
strcat(FileName. Suffix),

/* use system call to remove previous file*/
strcpy(Cmd. "rm ");
strcat(Cmd, FileName);
system(Cmd);

DataFile = fopen (FileName, "w");
/*Fill in F76 Table for ships by type*/

/*Read in ShipInfo for ships in this BG from appropriate file*/
while(s < MAXBGS)1

if(strcmp(BGsfil.ShipsfsI.Namne,blank) != 0)
fprintf(DataFile, "%s\n", BGs~il.Shipstsl.Name),
fprintf(DataFile, "%s~n", BGsli].Shipsjsj.Hull);

BGstil.Shipstsi.TypeCombatant);

fprintf(DataFile. "%W~n,
BGs[iI.Ships~s].Location.Dtg);

fprintf(DataFile, -%.3f\n",
BGs[iJ].Ships[s].Location.Speed);

fpnintf(DataFile, "%.3fnV',
BGs[il.Ships[s].Location.MaxSpeed);

fprintf(DataFile, "%.31f\n",
BGs[il.Shipsfsl.Location.Latitude);

101

fprintf(DataFile. "~%.31f\,n",
BGsli].Ships(sI.Location.Longitude);

BGs[iI.Shipslsl.Location.Course):

fprintf(DataFile, '%d\n".
BGs[i].Ships[s].F76.OnHand);

fpnintf(DataFile, "%d\sV'.
BGsti].Ships[s].F76.EstOnHand);

fprintf(DataFile. "%dn". BGs[iI.Shipsls].F76.Dtg);

/*F44Info here, not implemented yet*/

fprintf(DataFile. "%dn", BGs[i].Shipsfs].Approach);
fprintf(DataFile, -%dfn". BGs[iI.Ships[s].BreakAway);

/*Ordlnfo here; not implemented yet*/

/*Acftlnfo here; not implemented yet*/

fclose(DataFile),

*Get the F76 information by ship type from the ASCII text file into
*memory.

void GetF76Table(Table)
F76ShipTypelnfo Table[MAXSHIPTYPESI;

FILE* DataFile:,
int i =O0:

DataFile = fopen(F76DATA. "r");

while (! feof(DataFile))I
fscanf(DataFile, "%s", TablefiI.ShipType);
fscanf(DataFile, "U",. &Table[i].F76Capacity);
fscanf(DataFile, "Ud", &Table(iI.F76Receive);
fscanf(DataFile, "%d", &TablefiJ.F76Transfer);
fscanf(DataFile, "%r', &Table~i].Coeff~l);
fscanf(DataFile, "W"', &Tablefii.Coef I]);
fscanf(DataFile, -%f\n",&TabletiI.CoefI2I);

fclose(DataFile);

102

"* Get the battle group ships from the ship data ASCII text file and the
"* F76 information by ship type from memory. The next ship index av."Ilable
"* is returned as an integer.

mnt GetBGShips(BGs~i, F76Table)
BGInfo BGs[M4AXBGS]:,
int
F76ShipTypelnfo F76Table(MAXSHIPTYPES],

char FileName[lO0l;
char Suftix[MAXNAME];
static char blank [MAXNAMIE];
FILE* DataFile;
int s;
mnt Index;

s = 0;

/* Based on BG Index, create appropriate file name for BG ships. Ex:
For ships in BGsIIO], filename is fh/bglcss/scripts/data/Shipso.dat*/

strcpy(FileNamne, BGSHIPS);
strcpy(SuffixjntToString(i));
strcat(Suffix. ".dat");
strcat(FileName. Suffix);
DataFile = fopen (FileName. 'r');,

/*Readj in ShipInfo for ships in this BG from appropriate file*/
while(! feof(DataFile))I

fscanf(DataFile. "%[A\,nI*CBGs[iI.Shipsis].Namne):,
fscanf(DataFile, "%s\n", BGs[iI.Ships[s].Hull);

Index = TypeShip(BGs[i] .Shipsjs] Hull);

BGsfi].Ships[s].F76.Capacity =F76Table[Index].F76Capacity;
BGs[i].Shipslls].F76.ReceiveRate=
F76Table[Index].F76Receive;,
BGs[il.Ships[s].F76.TransferRate=
F76Table[Indexj .F76Transfer;

BGs[iJ.Ships[s'].F76.Coeft[Ol = F76Table[Index].CoefIOI;
BGsfil.Ships[s].F76.Coef[1] = F76Tablef Index] .Coefl I];
BGs[i].Ships[sl.F76.Coef[21 = F76Table[Index].Coef[2I;,

fscanf(DataFile, "%dn". &BGs[iJ.Ships[sI.TypeCombatant)-.
fscanf(DataFile, "%dn", &BGs[iI.Ships~s].Location.Dtg);
fscanf(DataFile. "%f\n", &BGstiI.Shipsls].Location.Speed),
fscanf(DataFile, "%f\n". &BGs[iI.ShipstsI .Location.MaxSpeed);
fscanf(DataFile. "%1t\n", &BGs[i] .Ships[s] .Location.Latitude):
fscanf(DataFile, "%ItN", &BGsti] .Shipsls] .Location.Longitude);
fscanf(DataFile, "%If\.n", &BGstiI .Ships[s].Location.Course);

/*Readj in last current F76 states*/
fscanf(DataFile, "%d\n", &BGs[i].Ships[s].F76.OnHand);,
fscanf(DataFile, "%drn". &BGs[i].Ships [s].F7.EstOnHand);
fscanf(DataFile. "%dn", &BGsti].Ships fs].F76.Dtg),

103

/*F44Info here-, not implemented yet*/

fscanf(DataFile. "%drn". &BGs~i] .Ships[s] .Approach);
fscanf(DataFile, -%&n", &BGsWi.Shipslsl .BreakAway);

/*Ordinfo here; not implemented yet*/

/*Acft~nfo here; not implemented yet*/

fclose(DataFile);
return(s);

"* Make a new battle group, using information provided by user to New BG
"* Panel. The index for the next available battle group in the array is
"* returned.

int MakeBG(BGs,i,Narne,DesgFRes,CRes.ORes,COResF76.F44,SSpeed.
USpeed,ASSpeed)

BGInfo BGsIIMAXBGS];
int i;
char NameIIMXNAME];
char Desg[MAXNAME];
float FRes, CRes, ORes, CORes,

F76, F44, SSpeed, USpeed, ASSpeed;

if (Name && Desg && FRes && CRes && ORes && CORes
&& F76 && F44 && SSpeed && USpeed && ASSpeed)

strcpy(BGs[iI.Name, Name);
st~rcpy(BGsfij. Designation, Desg);

BGs[i).Settings.FueLRes = FRes;

BGs[i].Settings.CLFFueIRes = CRes;,
BGs[iJ.Settings.OrdRes = ORes;
BGs[ij.Settings.CLFOrdRes = CORes;
BGstil.Settings.Max.F76 = F76;-
BGs~iI.Settings.MaxF44 = F4
BGsfi].Settings.StationSpeed = SSpeed;
BGsfiJ.Settings.UnrepSpeed = SSpeed;,
BGs[il.Settings.AcftShipSpeed = ASSpeed;,

return (1);
else

return (0);

104

*Save all battle groups to the ASCII text file containing BG data.

void SaveBGs(BGs)
BGInfo BGs[MAXBGS1;

FILE* DataFile;
int i =0;
static char blan[MAXNAMEI:,

DataFile = fopen(BGDATA, "w");

while (i < MAXBGS)(I
if (strcmp(BGsfi].Name, blank) != 0) 1

fprintf(DataFile,"%s~n", BGs[i].Name);,
fprintf(DataFile,"%s\an", BGs[i].Designation);
fprintf(DataFile,"%. lfni".BGs[i].Settings.FuelRes);
fprintf(DataFile."%. lt\n".BGs[i] .Settings.CLFFuetRes):,
fprintf(DataFile,"%. lf\nV,BGs[i].Settings.OrdRes):,
fprintf(DataFile,"%. 1 f\n",BGs[i] .Settings.CLFOrdRes),
fprintf(DataFile,"%. Ilf\n",BGs[iI.Settings.M~ax.F76);
fprintf(DataFile,"%. 1 Ni",BGs[iI.Settings.MaxF44);
fprintf(DataFile,"%. 1 tn".BGs[iI.Settings.StationSpeed);
fprintf(DataFile,"%. ItNn",BGs~iI.Settings.UnrepSpeed):.
fprintf(DataFile,"%.lI n",
BGs[i].Settings.AcftShipSpeed),

fclose(DataFile);

*Show list of battle group ships, given battle group index, panel name,
*and selection list item on panel.

void ShowBGShips(i, Panel, ItemName)
int i;
Id Panel,
char IternNarne[151;

char FileName[801;
FILE* DataFile;
char Suffix[(MAXNAME];
TEXT*~ temp[MAXBGS];
char Cmd[MAXNAME];
char bufflIO];
TAEINT a, z,
static char blankIIMAXNAMEI;

a= =0;

/*Based on BG Index, get the appropriate file name for BG ships. Ex:
For ships in BGs[01, filename is /h/bglcss/scripts/data/Shipso.dat*/
strcpy(fFileName. BGSHIPS);
strcpy(Suffix, IntToString(i)):,
strcat(Suffi~x, ".dat");

105

strcat(FileName, Suffix);

DataFile = fopen(FileName, r)

while (! feof(DataFile)) I
fscanf(DataFile,"%[A\nI\n', &Cmd[0D;,
z =0;

/*skjp over data until reach ship namle*/
for (z =0; z< 13; z++) I

fscanf(DataFile."%[A\.nIn", &bufq[o]);

temp[a]=(TEXT *) malloc(strlen(Cmd)+1);
strcpy(templal, Cmd);

fclose(DataFile);

Wpt-SetStringConstraints(Panel,ItemName~a,temp);

*Show battle group data given battle group array, index,and panel name.

void ShowBG(BGs, i, Panel)
BGInfo BGs[MAXBGS];
int
Id Panel;

Wpt_.SetStning(Panel, "Name", BGsfi].Naine);
WptSetString(Panel, "Designation", BGsl.Designation);,

WptSetReal(Panel, "FuelRes", BGs[i].Settings.FuetRes);
WptSetReal(Panel, "CLFFueIRes", BGs[i].Settings.CLFFueIRes):
Wpt..SetReal(PaneI, 'OrdRes", BGs~i].Settings.OrdRes);
WptSetReal(Panel, "CLFOrdRes". BGs[iI.Settuigs.CLFOrdRes);,
WptSetReal(Panel, "MaxF76", BGs[i].Settings.MlaxF76);.
WptSetReal(Panel, "MaxF44", BGs[iI.Settings.MaxF44);
WptSetReal(Panel, "StationSpeed", BGsfi].Settings.StationSpeed);
WptSetReal(Panel, "UnrepSpeed", BGsli].Settings.UnrepSpeed);
WptSetReal(Panel. "AcftShipSpeed", BGs~i].Settings.AcftShipSpeed);

*Show list of navy ships from ASCII text file to item in panel.

void ShowNavyShips(Panel, ItemnName)
Id Panel;,
char ItemNamne[151;

TEXT* tempIMAXBGSI;,
FILE* DataFile;
char Cmd[MAXNANME];
TAUINT a;

106

a = 0;

DataFile = fopen(NAVYS HIPS, "r")-,

while (! feof(DataFile)) f

fscanf(DataFile."%[A\nI\n", &Cmd[OI);

temp[a]=(TEXT *) malloc(strlen(Cmd)+ 1);

strepy(temp[aI, Cmd),

WptSetStringConstraints(Panel, ItemName,a,temp):

fclose(DataFile),

*Show list of battle groups from ASCII text file to item in panel.

void ShowBGs(Panel.ItemName)
Id Panel,
char IternName[15];

TEXT* temp[MAXBGS],
FILE* DataFile,
char Cmd[MAXNAME]:
char buff 10 1;
TAEINT a, :
static char blank[MAXNAME];

a = 0;

DataFfle = fopen(BGDATA, "r")-,

while (!feof(DataFile))f
fscanf(DataFile."%[Afn]\n". &Cmd[0]);
S= 0;

for (i =0,i < 10; i++)(
fscanf(DataFile.'%[A\nJ\n". &bufflol);,

if (strcmp(Cmd,blank) != 0
temp[a]=(TEXT *) malloc(strlen(Cmd)+ I):
strcpy(temp~aI. Cmd);

Wpt-SetStringConstraints(Panel, ItemNanie,a, temp);
fclose(DataFile);

107

"* Save new battle group using Id Target from user input panel. First,
"* GetBGs is called, returning the available index to the array. Next.
"* Make BG is called and then SaveBGS saves all battle groups.

int SaveNewBG (Target)
Id Target;

BGlnfo BGs[MAXBGS];
int BGlndex:

BGlndex = GetBGs(BGs);

if (MakeBG(BGs,BGlndex.StringParm(Target,"Name"),
StringPanm(Target,"Designation'},

Real.Parm (Target."FuelRes").
RealParm (TargetCLFFuelRes"),
RealParm (Target,"OrdRes"),
RealParm (Target,"CLFOrdRes"),
RealParm (Target,"MaxF76"),
RealParm (Target,"MaxF44").
RealParm (Target,"StationSpeed"),
RealParm (Target,"UnrepSpeed"),
RealParm (Target,"AcftShipSpeed")))I

SaveBGs(BGs);
return(1);

Ielse
return(O);

*This function merely wipes out the contents of a battle group panel.

void CancetBG(Panel)
Id Panel;

WptSetNoValue(Panel,"Namne");,
WptSetNoValue(Panel,"Designation");
WptSetNoValue(Panel,"FuetRes"),
WptSetNoValue(Panel,"CLFFueIRes")-,
WptSetNoValue(Panel,"OrdRes");
WptSetNoValue(Panel,"CLFOrdRes");
WptSetNoValue(Panel,"MaxF76");
WptSetNoValue(Panel,"MaxF44");
WptSetNoValue(Panel,"StationSpeed");
WptSetNoValue(Panel ,"UnrepSpeed"),
WptSetNoValue(Panel."AcftShipSpeed");.
WptSetNoValue(Panel."BGS hips");

108

* *** *•** ******* * * *** *** **** * ** *** *** ***** *** * * * *** •* **** * **

"* Using the string representation of the name of a battle group and the
"* index to the appropriate battle group in the array, return the index to
"* the battle group.

int GetBG(Name, BGIndex)
char NametMAXNAMEI:
int BGlndex;

FILE* DataFile;
int is;
char Cmd[MAXNAME];
char buffMAXNAME],
int Found:

Found = 0;

i= 0;

DataFile = fopen(BGDATA, "r");
while ((!feof(DataFile)) && (Found ==0))

fscanf(DataFile,"%[^\nTin1. &Cmd[0J);

s = 0;
for (s = 0, s < 10; s++){

fscanf(DataFile,"%s\n", &buf[OI);
I

if (strcmp(NameCmd) != 0){
i++;

I elsel
Found = 1;I

fclose(DataFile);

if (Found = 0) 1
return(BGlndex);

else I
return(i);

"* This deletes the battle group from the array by removing its name.

"* The name is replaced by blank spaces.

*/

void DeleteBG(BGs, i)
BGInfo BGs[MAXBGS];
int i;
I

static char blank[MAXNAME];

if(i != -1)(
strcpy(BGs[i].Nameblank);

109

"* This function checks the first two characters in a ship's hull number
"* and returns an integer that equates to an enumerated ship type.
** *** *** ***** ** * ***** **** *** *** **** ** ** **** *** *** ** ** *** ***

*/

int TypeShip(String)
char String[40];

int s;
char Slice[401;

strcpy(Slice, String);

Slice[2] = 0;

if (strcmp(Slice, "DD") = 0) 1
return (3);

1 else if (strcmp(Slice, "AO") -= 0) {
return (6);

"* This function adds a ship and its data to a battle group.
"* The ship list presented to the user contains both the hull number
"* and the ship name. The hull number is required to get the ship type for
"* the appropriate F76 information. The ship name is returned.
* *** *** ** **** * ***** *** **** ***** *** *** *** *** *** ***** ***** ** *** ***

*/

char* AddShip (BGs, i, s, ShipString)
BGlnfo BGs[MAXBGS];
int i, s;
char* ShipString;

int Index;
F76ShipTypelnfo F76Table[NMAXSHIPTYPES]:
char* MyString;
char* HullString;
char* NameString:

MyString = strdup(ShipString);

HullString = strtok(ShipString," ");

NameString = strstr(MyString,"USS");

strcpy(BGsli].Shipsls].Narne, NameString);

strcpy(BGs[i.Ships[s].Hull, HullString);

Index = TypeShip(HullString);

if (index == 3)1
BGs[i].Shipslsl.TypeCombatant = 1;

1

110

GetF76Table(F76Table);,

BGs~i].Ships[s].F76.Capacity = F76Tab~lerlndex].F76Capacity;
BC sAi].Shipsls].F76.OnHand = BGs[i] .Ships[s] .F76.Capacity-,
P js[i].Shipsls].F76.EstOnHand = BGs[i1.Shipslsl .F76.Capacity;
LGs[ij.Ships[sj.F76.Dfg = caffent-timeO;

BGs[i].Ships[sI.F76.ReceiveRate = F76Table~ilndexI.F76Receive;,
BGs[i].Ships[s].F76.TransferRate = F76TableIIIndex].F76Transfer:

BGs[i].Shipsfs].F76.CoefIOj = F76Table[Index1.CoetIOI;,
BGs[iI.Ships[s].F76.CoefL 1] = F76Table[Iridex] .Coefl I];
BGs(ij.Ships[sl.F76.CoetI2J = F76Table[hIr~dexl.Coef[2j,

BGs[iJ.Shipsls].Location.Dtg = curren,- imeO;
BGs[i].Shipsfs].Location.Speed = 0.0;
BGs[i].Ships[s].Location.MaxSpeed = 0.0;
BGs iI].Ships[s].Location.Latitude = 0.0;
BGs[i].Ships[s].Location.Longitude = 0.0;

return((char*)ShipString):

*Given the battle group array. this function gets the battle group data
*from the battle group data ASCII text file. Returns the next available
*battle group index.

mnt GetBGs(BGs)
BGInfo BGs(MIAXBGS]J;

FILE* DataFile;
int i= 0,

system ("cp SBGLCSS/datafBGData.dat $BGLCSS/data/B3GData~dat.bak'*h

DataFile = fopen(BGDATA. "~r");

while (!feof(DataFile))I
fscanf(DataFile, "%[A\JiP.,i", BGs[i].Narne);
fscanf(DataFile, "%IA\nIW', BGs[ii.Designation);
fscanf(DataFile. "%f\n", &BGs[i].Settnags.FuelRes):
fscanf(DataFile, '%f\n", &BGs[iI.Settings.CLFFuelRes);
fscanf(DataFile. "%f\n", &BGs[ii.Settings.OrdRes);
fscanf(DataFile, '%t\n", &BGs[iI.Settings.CLFOrdRes);
fscanf(DataFile, "%f\n", &BGs[iI.Settings.MaxF76);,
fscanf(DataFile. "%f\,n", &BGs[iJ .Settings.MaxF44);.
fscanf(DataFile. "%f\n". &BGs[iJ .Settings.StationSpe A),
fscanf(DataFile. -%An", &BGs~il.Setfings.UnrepSpeed);
fscanf(Dat~aFile. "%An", &BGsfiI.Settings.AcftS~itpSpeed):.

fclose(DataFile);
return(i):

*Author : Bernadette C. Brooks
*Office Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-2180
*Project
*Advisor : Dr. C. Thomas Wu
* Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-3391
*Filename : BGEventsLib.h
*Date : 27 Feb 93
*Content : C manifests, data type definitions, and data
* structure definitions
*Note : 'global.h" TAE-generated file includes bg.h

./

#include <stdio.h>
#include <stdlib.h>

enum ThreatType
Low,
Med,
High,
Raid,
Strike,
Asw,
NoThreat

I:

typedef enum ThreatType ThreatType;

enum CalcType
Ord,
F76,
F44,
BothFuel,
All

typedef enum CalcType CalcType;

112

enum TargetSize I
Small.
Medium,
Large

rypedef enum TargetSize TargetSize;

enum StrikeTypeI
SAirOnly,
SAirSurface,
SSurfaceOnly,
L-AirOnly,
L-AirSurface.
L-SurfaceOnly

typedef enum StrikeType StrikeType;

enum RaidType
SNA.
SLCM.
TACAIR

zypedef enum RaidType RaidType:,

enum TacticType I
ServiceStation.
DefiveryBoy,
CircuitRider.
Vertrep

typedef enum TacticType TacticType;

zypedef struct I
OrdName Name;
in! Quantity:,

JOrdAmounts:

zypedef struct I
int NumberofWepaons:
OrdAmounts Weaponsi~se[MAXORDI:.

I RaidOrd;

113

typedef struct
int DelShip,

RecShipi,
RecShip2;

TacticType Tactic;
double Latitude,

Longitude;
lUnreplnfo;

typedef struct
int ShipInvolved,
double Course:
double Speed;

IDirectionInfo;,

typedef struct
int ShipInvolved;
int TotalNumber
TargetSize Size-,
StrikeType AttackProffle;
double Latitude,

Longitude;
OrdAmounts StrikeOrdUse[MAXORD];

Strikelnfo;,

typedef struct
RaidType AttackProfile;
int Size,

ThreatAxis,
NumberofShips;

int Shipsinvolved[NMASHIPS 1;
RaidOrd ShipUse[MAXSHIPSJ;

I Raidinfo;

typedef struct
int ShipInvolved:
OrdAmnounts WeaponsData[MAXQRDI:,

)ASWlnfo;

typedef struct
OrdNamne NameIMAXORDI:.
int Range[MAXORD]:

)WeaponRangelnfo;

114

enum BGEventType
BGCourseSpeed,
ASWI-evel,
AAWLeveI,
SetStation.
ShipCourseSpeed.
Unrep.
Consol.
FuelTransfer,
OrdTransfer,
RaidEvent,
StrikeEvent.
ASWProsecute,
ResumeBGCourseSpeed.
Other

typedef enum BGEventType BGEventType;

enum PredictType
Orphan,
Child,
Parent,
Interval

typedef enum PredictType PredictType;

typedef struct
float F76PercentCapII3],

F44PercentCap[31;
I PercentCaplnfo;

typedef struct
PercentCaplnfo Ships [MAXBGS HIPS]

J BGResultlnfo;

struct BGHeader{
struct BGHeader *Prev,

*Next;
BGEventType EType:,
int Index;
int DTG;
char Date [DTGLENGTH].
char Title[MAXLENGTH]:,
float Course:,
float Speed;

typedef struct BGHeader BGHEADER:

115

struct BGEvent
struct BGEvent *rv

*Next,
int DTG,

Index,
Created,
Predictinterval:

BGEventType EType;
PredictType PType;
CaicType CType;,
ThreatType Trype;
Unrepinfo Unrep;
DirectionInfo Direction;
Strikelnfo Strike;
RaidInfo Raid;
ASWInfo ASW;.

typedef struct BGEvent BGE VENT:

struct RelationType
struct RelationType *rv

*Next;
int Created;

BGFVENT *hll
*Child2,
*Child3,
*Child4,
*Child5-,

typedef struct RelationType RELATION;

116

* ****************** **** • * ************** ****** ******** ******* ********.

*Author Bernadette C. Brooks
*Office : Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-2180
*Project
*Advisor : Dr. C. Thomas Wu
* Computer Science Department
* Naval Postgraduate School
* Monterey, CA 93943
* Phone: (408) 656-3391
*Filename : BGEventsLib.c
*Date : 27 Feb 93
*Content : Bodies of user-defined functions to represent battle
* groups and ships. C manifests contained in BGEventsLib.h
*Note : "global.h" TAE-generated file includes bg.h

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*TAE system include files*/
#include "taeconf.inp"
#include "wptinc.inp"
#include "symtab.inc"
#include "parblk.inc"
#include "terminc.inc"
#include "global.h"

#define YES I
#define NO 0

"* This function saves the battle group events list given an index to the"* appropriate battle group in the array and a pointer to the head of the
"* battle group event list. It returns the pointer to the head of the
"* list.

*/

BGEVENT* SaveBGEvents(BGlndex, BGEventList)
int BGIndex;
BGEVENT* BGEventList;

char FileName[100J;
char Suffix[MAXNAME];
FILE* DataFile;
BGEVENT* Current; /*pointer used to traverse the doubly-linked list*/

/*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[0], filename is /h/bglcss/scripts/data/EventsO.dat*/

strcpy(FileName, EVENTSDATA):
strcpy(Suffix,IntToString(BGlndex));
strcat(Suffix, ".dat");
strcat(FileName, Suffix);

117

DataFile = fopen (FileName, "w");

Current =BGEventList;,
/*assign the head pointer to Current to save the original position of the

head pointer*'/

while (Current != NULL)(
fprintf(DataFile, "%ft~", Current->DTG);
fprintf(DataFile, "%dfn", Current->Created);
fprintf(DataFile. "%d'.n", Current->EType);
fprintf(DataFile, "%d~n", Current->CType):
fprintf(DataFile, '%dWz", Current->AType);

if (Current->EType == BGCourseSpeed) I
fprintf(DataFile, "%ft~", Current->Direction.Course);,
fprintf(DataFile, "%litn, Current->Direction.Speed);

if (Current->EType == Unrep)~
fprintf(DataFile,"%dn". Current->Unrep.DelShip);
fprintf(DataFile,"%d\n". Current->Unrep.RecShip 1),
fprintf(DataFile,"%dt~n", Current->Unrep.RecShip2);
fprintf(DataFile,"%d\n", Current->Unrep.Tactic);
fprintf(DataFile,"%lIf", Current->Unrep.Latitude);
fprintf(DataFile."%lft", Current->Unrep.Longitude);
fprintf(DataFile,"%d\n", Curre~nt->Direction.Shiplnvolved);
fprintf(DataFile,"%lNi",Current->Direction.Course);
fprintf(DataFile,"%lf\n",Current->Direction.Speed);

Current =Current->Next;

fciose(DataFile);
return(BGEventList);

"* This function reads the battle group event list data from the appropri-
"* ate ASCII text fie given the index to the battle group array. It
* returns a pointer to the head of the battbe group event list.

BGEVENT* GetBGEvents(BGlndex)
int BGlndex:

char FileNamet 1001;
char SuffixfMAXNAME];
FILE* DataFile;
BGEVENT'* Current;
BGEVENT'* Head = NULL,
BGEVENTr* Temp;

/*aflocate memory for the Head event struct*/
Head = (BGEVENT*) malloc(sizeof (struct BGEvent)),

/*make sure these data are correctly initialized*/
Head->Next = NULL,
Head->Prev = NULL-.
Head->DTG = 0;

/*Based on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[01, filename is Ih/glcss/scripts/data/Events0.dat*/

118

strcpy(FideNamne, EVENTSDATA);
strcpy(Suffix,IntToString(BGlndex));
strcat(Suffix. ".dat");
strcat(FileName, Suffix);

if ((DataFile = fopen (FileName. -r")) !=NULL)(

/*get the Head data ftrst*/
fscanf(DataFile. "%ft'X &Head->DTG);
fscanf(DataFile, "%~"", &Head->Created)-,
fscanf(DataFile, "%d\n", &Head->EType);
fscanf(DataFile, "%d\n", &Head->CType);.
fscanf(DataFile, "%Wn", &Head->'IType);
if (!feof(DataFile))

if (Head->EType = BGCourseSpeed)I
fscanf(DataFile, "%INn", &Head->Direction.Course);
fscanf(DataFile, -%lbnV' &Head->Direcfion.Speed);,

if (Head->EType == Unrep) I
fscanf(DataFile,"%d\n", &Head->Unrep.DelShip);
fscanf(DataFile,"%d'n'. &Head->Unrep.RecS hip 1):
fscanf(DataFile."%d'n", &Head->Unrep.RecShip2);
fscanf(DaxaFile,"%d'n", &Head->Unrep.Tactic),
fscanf(DataFile,"%lItu",&Head->Unrep.Latitude);,
fscanf(DataFile,"%lftn,&Head->Unrep.Longitude);
fscanf(DataFile."%dfn".&Head->Direction.Shiplnvolved);
fscanf(DataFile,"%lf\n",&Head->Direction.Course);
fscanf(DataFile,'%1Nt',&Head->Direction.Speed);

/*other event cases to be implemented*/

/*assign Head to Current to save original Head pointer position*/
Current = Head;

while (!feof(DataFile))I

/*make a new event node for each new data read*/
Temp = (BGEVENT*) malloc(sizeof (stmuct BGEvent))
Temp->Next = NULL;

/*attch new node to Current*/
Temp->Prev =Current;
Current->Next = Temp:

/*move to the new node*/
Current = Current->Next;

fscanf(DataFile, "%d\n", &Current->DTG);
fscanf(DataFile. "WW'n, &Current->Created)-,
fscanf(DataFile, "%M'n, &Current->EType);
fscanf(DataFile, -'%dn", &Current->CType);
fscanf(DataFile, "%dn". &Current->T'lype),
if (!feof(DataFile)) I

if (Current->EType ==BGCourseSpeed)i

fscanf(DataFile."%lfi".&Current->Direction.Speed):

if (Current->EType == Unrep) I
fscanf(DataFile,"%dfn". &Current->Unrep.DelShip):
fscanf(DataFiIe,-%d\n", &Current->Unrep.RecShip 1):

119

fscanf(DataFile,"%dfn", &Current->Unrep.RecShip2);,
fscanf(DataFile."%dn"ii" &Current->Unrep.Tactic):,
fscanf(DataFile,"%11\n", &CulTent->Unrep.Latitude),
fscanf(DataFile.%Ift", &Current->Unrep.Longitude),

fscanf(DataFile,"%d\n",
&Current->Direction.Shiplnvolved);
fscanf(DataFile,"%lfi",&Current->Direction.Cours);
fscanf(DataFile,"%U\t",&Current->Direction.Speed);

/Pother event cases to be implemented*/

fclose(DataFile);

return(Head):,

"* Given a pointer to the newly rmade event node and values passed from
"* the Unrep panel, return a completed unrep event node to be added to
"* the event list. After calling this function, it is necessary to make
"* the following calls to these functions (yet to be implemented):
"* GetRelations,
"* MakeRelation,
"* InsertRelation,
"* UnrepCalculations,
*MakeChild,

*InsertBGEvent,

*SaveRelations,

*SaveBGEvents.

BGEVENT* MakeUnrep(BGEvent, Delivery, Rec 1, Rec2. Tactic, Lat, Long)
BGEVENT* BGEvent;
int Delivery, Red , Rec2, Tactic:
double Lat, Long;

if (BGEvent->EType = 5)1
BGEvent->Unrep.DelShip = Delivery;
BGEvent->Unrep.RecShipl = Rec ;
BGEvent->Unrep.RecShip2 = Rec2:
BGEvent->Unrep.Tactic =Tactic;
BGEvent->Unrep.Latitude = Lat,
BGEvent->Unrep.Longitude = Long;

Ielse

retum(BGEvent);

120

"* This function creates the header to be displayed in the event list

"* panel to the user. Given the event parameters, return a header node.

*/

BGHEADER* MakeBGHeader(EventType. EventTime, EventCourse, EventSpeed)

/*Functioa is incomplete. It is designed to handle past of the battle course and
speed change event. Need to add remaining parameters to make function
generic to all events.*/

BGEventType EventType;
char EventTime[DTGLENGTH];
float EventCourse;
float EventSpeed;

BGHEADER*BGHeader;

BGHeader = (BGHEADER*) malloc(sizeof (struct BGHeader));

BGHeader->Prev = NULL;

BGHeader->Next = NULL;

if (EventType = BGCourseSpeed){
strcpy(BGHeader->Date, EventTime);
strcpy(BGHeader->Title, "BG course to");

BGHeader->Course = EventCourse;
BGHeader->Speed = EventSpeed;
BGHeader->EType = EventType;

/*other events to be implemented*/

return(BGHeader);

"* Given the appropriate index to the battle group array, this function
"* gets the battle group header information from the appropriate ASCII
"* text file and returns a pointer to the head of the battle group header
"* list. Similar in algorithm to GetBGEvents.

*/

BGHEADER* GetBGHeaders(BGlndex)
int BGIndex;

int i = 0;
FILE* DataFile;
char Suffix[MAXNAME];
char FileName[100];
BGHEADER* Current;
BGHEADER* Head = NULL;
BGHEADER* Temp;

Head = (BGHEADER*) malloc(sizeof (struct BGHeader));
Head->Next = NULL;
Head->Prev = NULL;
Head->DTG = 0;

121

/*Basd on BG Index, create appropriate file name for BG events. Ex:
For events in BGs[OI. filename is /h/bglcss/scripts/data/EventsO.dat*/

strcpy(FileName, HEADERSDATA);
strcpy(Sufflx,IntToString(BGlndex));
strcat(Suffix, ".dat");,
strcat(FileName. Suffix);

if ((DataFile = fopen (FileName, "r")) !=NULL)(
Head->Index = i
fscanf(DataFile, "%cfi", &Head->EType);
fscanf(DataFile, "%drn", &Head->DTG);
fscanf(DataFile. -%s~n", Head->Date):
fscanf(DataFile, "%s\n", Head->Title);
if (Head->EType == BGCourseSpeed)(I

fscanf(DataFile,"lIf", &Head->Course)-,
fscanf(DataFile,"If'j", &Head->Speed);

/Pother events to be implemented*/

Current = Head:

while (!feof(DataFile))I
Temp = (BGHEADER*) malloc(sizeof (struct BGHeader));
Temp->Next = NULL,
Temp->Prev = Current;
Current->Next = Temp;
Current = Current->Next-,

fscanf(DataFile, "%d\zi", &Head->EType);,
fscanf(DataFile. -%ni", &Currnt->DTG),
fscanf(DataFile, "%sfn", Current->Date);
fscanf(DataFile, "%s\,n", Current->Title);

if (Current->EType == BGCourseSpeed) I

fscanf(DataFile,"lftn", &Current->Course),
fscanf(DataFile,"Iftn", &Current->Speed);

/*other events to be implemented*/

fclose(DataFile);

retumn(Head);,

122

"* This function inserts the newly created BGHeader into the Header list
"* given a pointer to the head of the header list and a pointer to the
*newly created BGHeader. It returns a pointer to the head of the header
*list.

BGHEADER* InsertBGHeader(Head, BGHeader)
BGHEADER* Head;
BGHEADER* BGHeader;

int SpotFound;
BGHEADER* Current;

SpotFound = NO;
Current = Head;

if (Head->DTG = 0) 1
Head = BGHeader;

Ielse if ((BGHeader->DTG > Current->DTG)
&& (Current->Next =- NULL)) I

Current->Next = BGHeader;
BGHeader->Prev =Current-,

else if ((BGHeader->DTG > Current->DTG) && (Current->Next != NULL))(

while ((Current->Next != NULL) && (SpotFound == NO))

if (BGHeader->DTG <= Current->DTG)
SpotFound = YES:

IelseI
Current =Current->Next:

if (Current->Next =- NULL && BGHeader->DTG >= Current->DTG) I
Current->Next = BGHeader;
BGHeader->Prev = Current;

IelseI
BGHeader->Next = Current;
BGHeader->Prev =Current->Prev;
Current->Prev = BGHeader;
BGHeader->Prev->Next = BGHeader;

else if (BGHeader->DTG <= Current->DTG)
Current->Prev = BGHeader-,
BGHeader->Next = Current-,
Head =BGHeader;

return (Head);

123

"* Given an index to the battle group array and a pointer to head of
"* the battle group header list, this function saves the header list data
"* to the appropriate ASCII text file. Returns a pointer to the head of
"* the header list.

BGHEADER* SaveBGHeaders(BGlndex, BGHeaderList)
int BGlndex;
PGHEADER* BGHeaderList;

char FileNamef 1001;
char Suffix[MAXNAME];
FILE* DataFile;,
BGHEADER* Current;

/*Basd on BG Index, create appropriate file name for BG events. Ex:
For events in BGslIOI, filename is /h/bglcss/scripts/data/Eventso.dat*/

strcpy(Fi~eNanie, HEADERSDATA);

strcpy(Suffix,lntToString(BGlndex));,

strcat(Suffix, ".dat");

strcat(FileName, Suffix);

DataFile = fopen (FileName, "w");

Current = BGHeaderList;

while (Current? NULL) I
fprintf(DataFile. "%ft~", Current->EType);
fprintf(DataFile, -%d'W', Current->DTG);
fprintf(DataFile. "%s\,n", Current->Date);
fprintf(DataFile. '%s\n", Current->Title);

if (Current->EType == BGCourseSpeed)
fprintf(DataFile,"%lt'n", Current->Course);
fprintf(DataFile,"%lf\fl". Current->Speed);

/*other events to be implemented*/

Current = Current->Next,

fclose(DataFile);
return(BG14eaderList);

124

"* Given the information from an event panel, this function makesa battle
"* event node and returns a pointer to it. This function is currently
"* designed to handle only a battle group course and speed change event.
"* It needs to be extended to handle the remaining events.

BGEVENT* MaiceBGEvent(EventCreated. EventDTG, EventType. EventPredictType,
EventCalc, EventThreat. EventShip,
EventCourse, EventSpeed)

int EventCreated,
EventDTG,
EventShip;

BGEventType EventType;
PredictType, EventPredictType;
CaicType EventCalc;
ThreatType EventThreat;
float EventCourse;,
float EventSpeed;

BGEVENT* BGEvent;

BGEvent = (BGEVENT*) malloc(sizeof (struct BGEvent))

BGEvent->Created = EventCreated;
BGEvent->Prev = NULL;
BGEvent->Next = NULL;
BGEvent->DTG = EventDTG;
BGEvent->EType = EventType;
BGEvent->PType = EventPredictType;
BGEvent->CType =EventCalc,
BGEvent->TType = EventThreat;

if (BGEvent->EType == BGCourseSpeed)f
BGEvent->Direction.Course =EventCourse;

BGEvent->Direction.Speed =EventSpeed;

/*other events to be implrnented*/

return (BGEvcnt);

125

"* This functions makes a related-event node used to connect related
"* events together such as as unrep with its ,'ssociated stationing events.
"* The parameter passed is the integer value of the creation time for the
"* parent event (such as the unrep event). No more than 5 associated
"* events are allowed by this function. Returns a pointer to the newly
"* created relation node.

*/

RELATION* MakeRelation(RelationCreated)
int RelationCreated;

RELATION* Relation;

Relation = (RELATION*) malloc(sizeof (struct RelationType)):

Relation->Created = RelationCreated;
Relation->Prev = I'TJLL;
Relation->Next = NULL;
Relation->Child 1 = NT TLL;
Relation->Child2 = NULL;
Relation->Child3 = NULL;
Relation->Child4 = NULL;
Relation->Child5 = NULL;

return (Relation);

•1*****•*****•************************ **********•***********

* This function makes a child event by ir'st calling MakeBGEvent and
* attaching the child to the appropriate relation node. After a call
* to this function is made, need to call, for instance, UnrepCalculations
* and make the appropriate assignments to the event node. Function
* returns a pointer to the newly made child.
* **** * * *** ** ****•**** ** * *** ****** ****** * •****** *** *** **•*

*/

BGEVENT* MakeChild(Relation. ParentCreationTime)
RELATION* Relation;
int ParentCreationTime;

BGEVENT* Child;
int Now;

/*now should be assigned the int•,ger value of current system time*/

Child = MakeBGEvent
(Now.ParentCreationTime.Other.Child.NoThreat, 100,0.0,0.0);

if (Relation->Childl == NULL) I
Relation->Childl = Child;

else if (Relation->Child2 = NULL)
Relation->Child2 - Child;

else if (Relation->Child3 = NULL) {
Relation->Child3 = Child;

I else if (Relation->Child4 = NULL)
Relation->Child4 = Child;

126

I else if (Relation->Child5 == NULL) I
Relation->Child5 = Child;

return (Child);

[* **** * ** ***** ***** *** *** *** *** * ***** *** ****** *** *** * *** **

* This function takes a pointer to the head of the battle group event
* list and a pointer to the newly created battle group event and inserts
* the new event into the list based on chronological dat time group of
* the events. Returns a pointer to the head of the batIle group event
* list.
* ** * ***** * ***** ***** ****** ****** ** *** ****** *** ***** ** *** ***

*/

BGEVENT* InsertBGEvent(Head, BGEvent)
BGEVENT* Head;
BGEVENT* BGEvent;

int SpotFound;
BGEVENT* Current-

SpotFound = NO;
Current = Head;

if (Head->DTG == 0) f
Head = BGEvent;

else if ((BGEvent->DTG > Current->DTG)
&& (Current->Next == NULL)) I

Current->Next = BGEvent;
BGEvent->Prev = Current;

I else if ((BGEvent->DTG > Current->DTG)

&& (Current->N'!xt != NULL)) I

while ((Current->Next != NULL) && (SpotFound == NO))

if (BGEvent->DTG <= Current->DTG) I
SpotFound = YES;

I else I
Current = Current->Next:

if (Current->Next =- NULL
&& BGEvent->DTG >= Current->DTG)

Current->Next = BGEvent;
BGEvent->Prev = Current-

} else I
BGEvent->Next = Current;
BGEvent->Prev = Current->Prev:
Current->Prev = BGEvent;
BGEvent->Prev->Next = BGEvent;

I else if (BGEvent->DTG <= Current->DTG) {
Current->Prev = BGEvent;
BGEvent->Next = Current,

127

Head = BGEvent;

/* if BGEvent is actually an interval node, copy course and speed
* from Prev */

if ((BGEvent->EType = Other) && (BGEvent->Prev != NULL))
BGEvent->Direction.Course = BGEvent->Prev->Direction.Course;
BGEvent->Direction.Speed = BGEvent->Prev->Directioii.Sped;

return (Head);

"* This function's basic algorithm is virutally the same to InsertBGEvent
"* except for the final if-statement assignments and the data type
"* involved.

*/

RELATION* InsertRelation(Head, Relation)
RELATION* Head;
RELATTON* Relation;

int SpotFound;
RELATION* Current;

SpotFound = NO;
Current = Head;

if (Head == NULL) I
Head = Relation:

Ielse if((Relation->Created > Current->Created)
&& (Current->Next == NULL))

Current->Next = Relation;
Relation->Prev = Current;

j else if ((Relation->Created > Current->Created)
&& (Current->Next != NULL)) {

while ((Current->Next != NULL) && (SpotFound == NO)) I
if (Relation->Created <= Current->Created) I

SpotFound = YES;
I else I

Current = Current->Next;

if (Current->Next = NULL && Relation->Created >=
Current->Created) I

Current->Next = Relation;
Relation->Prev = Current:

I else I
Relation->Next = Current;
Relation->Prev = Current->Prev:
Current->Prev = Relation:
Relation->Prev->Next = Relation;

I else if (Relation->Created <= Current->Created) I
Current->Prev = Relation;

128

Relation->Next = Current;
Head = Relation:

return (Head);

/********* ***** ** ****** *** ****** **** ***** ***** ******* *** *****

"* This functions finds the Parent event with its unique time stamp. If
"* If the parent doesn't exist, then it finds the orphan event and returns
"* a pointer to the event found.

*/

BGEVENT'* GetParent(Head, Creation)
BGEVENT* Head;
int Creation;

BGEVENT* Current,
BGEVENT* OrphanEvent:
int SpotFound;

SpotFound = NO;
OrphanEvent = NULL;
Current = Head;

/* if Head of list is orphan and there are events to scan */
if (Current->Next != NULL) I

while ((Current->Next != NULL) && (SpotFound ==
NO)) I

if (Current->Created != Creation)
Current = Current->Next;

I else if ((Current->Created = Creation) &&
(Current->EType = 2)) 1

Current = Current->Next;
else (

SpotFound YES;

return (Current);

else if (Current->Next == NULL) I
return (Current):

else if (Current == NULL) I
return (OrphanEvent):

1* ** **** * * * * **** * * ** S* ***** **** ** * ***** ** **** ** **** * ***** **

* This functions finds the Parent event with its unique time stamp. If
* If the parent doesn't exist, then it finds the orphan event and returns
* a pointer to the event found.
* ** **** * **** ***** ,.,* * * *** **,**,i* * **•***** **** ****,**,* ***,**

*/

RELATION* GetRelation(Head, Creation)
RELATION* Head;
int Creation;

129

RELATION* Current;
RELATION* OrphanEvent;
int SpotFound;

OrphanEvent = NULL;
Current = Head;
SpotFound = NO;

/* if Head of list is orphan and there are events to scan */
if (Current->Next != NULL) I

while ((Current->Next != NULL) && (SpotFound == NO)) t

if (Current->Created != Creation) I

Current = Current->Next;
else I

SpotFound = YES;

return (Current);

else if (Current->Next == NULL) I
return (Current);

else if (Current == NULL) I
return (OrphanEvent);

"* Given a pointer to the head of the battle group event list and the
"* event to be deleted, this function deletes the event. Before calling
"* this function with the Parent Event node pointer, need to call
"* the DeleteChildren function to delete the associated children.

*/

BGEVENT *DeleteBGEvent(Head, BGEvent)
BGEVENT *Head;
BGEVENT *BGEvent;

/* delete tail */
if ((BGEvent->Next == NULL) && (BGEvent->Prev != NULL))

BGEvent->Prev->Next = NULL;
BGEvent->Prev = NULL;
BGEvent->Next = NULL;

/* delete Head */
else if ((BGEvent->Prev == NULL) && (BGEvent->Next != NULL)) I

Head = BGEvent->Next;
Head->Prev = NULL;

/* delete middle */
I else if ((BGEvent->Next != NULL) && (BGEvent->Prev != NULL))

BGEvent->Prev->Next = BGEvent->Next;
BGEvent->Next->Prev = BGEvent->Prev;

/* delete one-node list */

130

Ielse
Head = NULL;
BGEvent = NULL;

free(Head):

free(BGEvent);

return (Head);

* Tis function makes repeated calls to DeleteBGEvent in order to delete
*all of the children of the Parent event. Returns the head of the
*battle group event list.

BGEVENT'* DeleteChildren(Head, Parent)
BGEVENT'* Head-,
RELATION*Parent;

if (Parent->Childl != NULL)
Head = DeleteBGEvent(Head. Parent->Child 1);

if (Parent->Child2 !=NULL)
Head = DeleteBGEvent(Head, Parent->Child2);

if (Parent->Child3 != NULL)
Head = DeleteBGEvent(Head, Parent->Child3);,

if (Parent->Child4 !=NULL)
Head = DeleteBGEvent(Head, Parent->Child4);

if (Parent->Child5 != NULL)
Head = DeleteBGEvent(Head, Parent->Child5);

return (Head);

131

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * */
/**** File: global.h *** */
/**** Generated: Dec 2 16:01:50 1992 * */
* **

"* PURPOSE:
"* This global header file is automatically "#include"d in each panel
"* file. You can insert references to global variables here.
* **

*/

#ifndef IGLOBAL /* prevent double include */
#define I-GLOBAL 0

/* macros for access to parameter values

"* These macros obtain parameter values given the name of
"* a Vm object and the name string of the parameter.
"* The Vm objects are created by the InitializeAllPanels
"* function for a resource file.

* Reference scalar parameters as follows:

* StringParm(myPanelTarget, "s") -- string pointer
* IntParm(myPanelTarget, "i") -- integer value
* RealParm(myPaneiTarget, "r") -- real value

* For vector parameters, do the following:

* TAEINT *ival;
* ival = &IntParm(myPanelTarget, "i");
* printf ("%d %d %d", ival[0], ival[1], ivalI21);
*/

#include "bg.h"

#include "BGEventsLib.h"

struct VARIABLE *VmFind 0;

#define StringParm(vmld, name) (SVAL(*VmFind(vmld, name),0))
#define IntParm(vmld, name) (IVAL(*VmFind(vmld, name), 0))
#define RealParm(vmld, name) (RVAL(*VmFind(vmld, name), 0))

/* Dispatch Table typedef */

typedef VOID (*FUNCTION_'PTR) 0;
typedef struct DISPATCHf

TEXT *parmName;
FUNCTIONPTR eventFunction;

#define EVENTHANDLER static VOID /* a flag for documentation */

/* Display Id for use by direct Xlib calls: */

extern Display *DefaultDisplay;

#define SETAPPLICATIONDONE \

132

extem BOOL ApplicationDone; \
ApplicationDone = TRUE; \

#endif

133

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panWptHelp.c *** */
/**** Generated: Jan 19 14:53:14 1993 ***
/,***
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: WptHelp
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* #include "pan_3WptHelp.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* For the panel items:
"* (NO EVENT GENERATING ITEMS IN THIS PANEL)

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panWptHelp.h"

/* One "include" for each connected panel */

Id WptHelpTarget, WptHelpView, WptHelpId;
/* WptHelpDispatch is defined at the end of this file */

1* **•**:***

* Initialize the view and target of this panel.
*/

FUNCTION VOID WptHelpInitializePanel (vmCollection)
Id vmCollection;I
Id CoFind 0,

WptHelpView = CoFind (vmCollection, "WptHelp-v");
WptHelpTarget = Co.Find (vmCollection, "WptHelp_t");

* Create the panel object and display it on the screen.
*/

FUNCTION VOID WptHelpCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

if (WptHelpld)
printf ("Panel (WptHelp) is already displayed.\n");

else
WptHelpld = WptNewPanel (Default-Display, WptHelpTarget, WptHelpView,

relativeWindow, WptHelpDispatch, flags);I

1* **********•***************************•**********************************

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/
FUNCTION VOID WptHelpDestroyPanel (

134

WptPanelErase(WptHelpld);
WptHelpld=O;

* Connect to this panel. Create it or change it's state.

FUNCTION VOID WptHelpConnectPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (WptHelpId)

Wpt_SetPanelState (WptHelpld, flags);
else

WptHelpCreatePanel (relativeWindow, flags):
I

struct DISPATCH WptHelpDispatch[] =
{NULL, NULL) /* terminator entry */

I;

135

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panWptHelp.h *** */
/**** Generated: Jan 19 14:53:14 1993 ***
* *********t***************************** ***********************************

"* PURPOSE:
"* Header file for panel: WptHelp

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* WptHelp
,

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* **

#ifndef IPANWptHelp /* prevent double include */
#define I_PANWptHelp 0

/* Vm objects and panel Id. */
extern Id WptHelpTarget, WptHelpView, WptHelpld;

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH WptHelpDispatch[;

/* Initialize WptHelpTarget and WptHeipView *1
extern VOID WptHelpInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID WptHelpCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID WptHelpDestroyPanel ();

/* Connect to this panel. Create it or change it's state */
extern VOID WptHelp_ConnectPanel 0:
#endif

136

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: wpthelp.c *** */
/* Generated: Jan 19 14:53:14 1993 ***
* ***

"* PURPOSE:
"* This the main program of an application generated by the TAE Plus Code
* Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* To turn this into a real application, do the following:

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string "pan-" with the
* panel name (followed by a -.c"). Each parameter that you have defined
* to be "event-generating", has an event handler procedure in the
* appropriate panel file. Each handler has a name that is a
* concatentation of the parameter name and the string "-Event". Add
* application-dependent logic to each event handler. (As generated by
* the WorkBench, each event handler simply logs the occurrence of the
* event.)

* 2. To build the program, type "make". If the symbols TAEINC.
* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

* ADDITIONAL NOTES:
* 1. Each event handler has two arguments: (a) the value vector
* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with
* count 1.

* Though it's unlikely that you are interested in the value of a button
* event parameter, the values are always passed to the event handler for
* consistency.

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetId Vm objects that are created in
* InitializeAllPanels. There are macros defined in global.h to assist
*in accessing values in Vm objects.

* To access panel Id, target, and view, of other panels, add an
* "#include" statement for each appropriate panel header file.

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

*./

#include "taeconf.inp"
#include "wptinc.inp"
#include "symtab.inc"
#include "global.h" /* Application globals */

Display *DefaultDisplay;
BOOL ApplicationDone = FALSE;

main (argc, argv)

137

FUNINT argc;
TEXT *argv[];

I
WptEvent wptEvent; /* event data */
CODE eventType:

COUNT termLines, termCols;
CODE termType;

/* PROGRAMMER NOTE:
* add similar extern's for each resource file in this application
*/
extem VOID wpthelpInitializeAllPanels 0;
extern VOID wpthelpCreateInitial_Panels (;

struct DISPATCH *dp; /* working dispatch pointer */
IMPORT struct VARIABLE *VmFind0;
struct VARIABLE *parmv, /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
t_pinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */
f_forcelower (FALSE);

Default-Display = WptInit (NULL);

/* initialize resource file */
/* PROGRAMMER NOTE:
"* For each resource file in this application, calls to the appropriate
"* InitializeAllPanels and CreateInitialPanels must be added.
*1
wpthelpInitialize All Panels ("/h/bglcss/scripts/gui/setup/wpthelp.res");
wpthelpCreateInitialPanels 0;

/* main event loop */
/* PROGRAMMER NOTE:"* use SETAPPLICATIONDONE in "quit" event handler to exit loop.
"* (SETAPPLICATION_DONE is defined in global.h)
*/
while (!ApplicationDone)

eventType = Wpt_NextEvent (&wptEvent); /* get next WPT event */

switch (eventType)

case WPTPARMEVENT:

/* Event has occurred from a Panel Parm. Lookup the event
"* in the dispatch table and call the associated event
"* handler function.
*/

dp = (struct DISPATCH *) wptEvent.p-userContext;
for (; (*dp).parmName != NULL: dp++)

if (s-equal ((*dp).parmName, wptEvent.parmName))
I
parmv = VmFind (wptEvent.p-dataVm, wptEvent.parmName);
(*(*dp).eventFunction)

((*parmv).v cvp, (*pannv).v count);

138

break;I
break;

case WPTFILEEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle file events.
"* Use WptAddEvent and WptRemoveEvent to register and remove
* event sources.*/

printf ("No EVENTHANDLER for event from external source.\n");
break;

case WPT_WINDOWEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle window events.
"* WPT_WINDOWEVENT can be caused by windows which you directly
"* create with X (not TAE panels), or by user acknowledgement
"* of a WptPanelMessage (therefore no default print statement
"* is generated here).
*/

break;

case WPTTIMEOUTEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle timeout events.
"* Use WptSetTimeOu, to register timeout events.
*/

printf ("No EVENTHANDLER for timeout event.\n"),
break;

default:

printf("Unknown WPT Event\n");
break;I

/* end main event loop */

WptFinisho;/* close down all display connections */

/* PROGRAMMER NOTE:"* Application has ended normally. Add application specific code to
"* close down your application
*/

/* end ,.,ain */

139

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * *1
/**** File: wpthelp-creat-init.c *** */
/**** Generated: Ian 19 14:53:14 1993 *

"* PURPOSE:
"* Displays all panels in the initial panel set of this resource file

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is added to the initial panel set
"* A panel is deleted from the initial panel set
"* For the set of initial panels:
"* WptHelp

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

*/
#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */

/* One include for each panel in initial panel set */
#include "panWptHelp.h"

FUNCTION VOID wpthelpCreate_Initial_Panels 0I
/* Show panels */

WptHelpCreate Panel (NULL, WPTPREFERRED);

14)

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/**** File: wpthelp-init-pan.c *** */
/**** Generated: Jan 19 14:53:14 1993 ** *//. *************************************k***********************************

"* PURPOSE:
"* Initialize all panels in the resource file.

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is deleted
"* A new panel is added
"* A panel's name is changed (not title)
"* For the panels:
"* WptHelp

"* CHANGE LOG:
"* 19-Jan-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include .wptinc.inp"
#include -symtab.inc"
#include "global.h" /* Application globals */

f* One "include" for each panel in resource file */

#include "panWptHelp.h"

FUNCTION VOID wpthelp-lnitialize Ali Panels (resfileSpec)
TEXT *resfi'eSpec;I
extern Id Co Find 0;
extem Id CoNew 0;
Id vmCollection;

/* read resource file */
vmCollection = Co New (PABORT);
CoReadFile (vmCollection, resfileSpec, PABORT);

f* initialize view and target Vm objects for each panel */
WptHelp-lnitializePanel (vmCollection);

141

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: BGSetup.c *** */
/**** Generated: Dec 2 16:01:50 1992 *** *//, **4************************

"* PURPOSE:
"* This the main program of an application generated by the TAE Plus Code
"* Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* To turn this into a real application, do the following:

* 1. Each panel that has event generating parameters is encapsulated by
"* a separate file, named by concatenating the string "pan_" with the
"* panel name (followed by a -.c"). Each parameter that you have defined
"* to be "event-generating", has an event handler procedure in the
"* appropriate panel file. Each handler has a name that is a
"* concatentation of the parameter name and the string -'Event". Add
"* application-dependent logic to each event handler. (As generated by
"* the WorkBench, each event handler simply logs the occurrence of the
* event.)

* 2. To build the program, type "make". If the symbols TAEINC.
* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

* ADDITIONAL NOTES:
* 1. Each event handler has two arguments: (a) the value vector
* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with
* count 1.

* Though it's unlikely that you are interested in the value of a button
* event parameter, the values are always passed to the event handler for
* consistency.

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in
* InitializeAllPanels. There are macros defined in global.h to assist
* in accessing values in Vm objects.

* To access panel Id, target, and view, of other panels, add an
* '#include" statement for each appropriate panel header file.

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "symtab.inc"
#include "global.h" /* Application globals *1
Display *Default_Display,

BOOL ApplicationDone = FALSE;

main (argc, argv)

FUNINT argc;
TEXT *argvl];

142

WptEvent wptEvent; /* event data */
CODE eventType;

COUNT termLines, termCols;
CODE termTypeJ*BERN*/ret;

/*BERN*/

/* PROGRAMMER NOTE:
* add similar extem's for each resource file in this application
*/

extem VOID BGSetupInitializeAllPanels ()
extem VOID BGSetupCreateInitialPanels 0;

struct DISPATCH *dp; /* working dispatch pointer */
IMPORT struct VARIABLE *VmFindo;
struct VARIABLE *parmv; /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
tLpinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */
f_force-lower (FALSE),

Default-Display = WptInit (NULL),

/* initialize resource file */
/* PROGRAMMER NOTE:
"* For each resource file in this application, calls to the appropriate
"* InitializeAllPanels and CreateInitialPanels must be added.
*/

BGSetupInitializeAllPanels ("/h/bglcss/scripts/gui/setup/BGSetup.res");
BGSetupCreatejlnitialPanels 0;

/* main event loop */
/* PROGRAMMER NOTE:"* use SETAPPLICATIONDONE in "quit" event handler to exit loop.
"* (SETAPPLICATIONDONE is defined in global.h)
*/

/*BERN*/
ret = WptSetHelpStyle ("wpthelp.res");
if (ret != SUCCESS)

printf("Couldn't set help style\n");

while (!ApplicationDone)

eventType = WptNextEvent (&wptEvent); /* get next WPT event */

switch (eventType)

case WPTPARMEVENT:

/* Event has occurred from a Panel Parm. Lookup the event
"* in the dispatch table and call the associated event
"* handler function.
*/

dp = (struct DISPATCH *) wptEvent.p-userContext;

143

for (; (*dp).parmName != NULL; dp++)
if (s equal ((*dp).parmName, wptEvent.parmName))I

parmv = VmFind (wptEvent.p-dataVm, wptEvent.parmName);
(*(*dp).eventFunction)

((*parmv).v-cvp, (*parmv).v_count);
break;I

break;

case WPTFILEEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle file events.
"* Use WptAddEvent and WpLRemoveEvent to register and remove
* event sources.
*/

printf ("No EVENTHANDLER for event from external source.n");
break;

case WPT_WINDOWEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle window events.
"* WPT_WINDOWEVENT can be caused by windows which you directly
"* create with X (not TAE panels), or by user acknowledgement
"* of a WptPanelMessage (therefore no default print statement
" is generated here).
*/

break;

case WPTTIMEOUT EVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle timeout events.
"* Use WptSetTimeOut to register timeout events.
*/

printf ("No EVENTHANDLER for timeout event.\i");
break;

default:

printf("Unknown WPT Event\n"):
break;I

/* end main event loop */

WptFinisho;/* close down all display connections */

/* PROGRAMMER NOTE:
"* Application has ended normally. Add application specific code to
"* close down your application
*/

/* end main */

144

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: BGSetup creatinit.c *** */
/* Generated: Jan 19 11:14:17 1993 ***
/**

* PURPOSE:
* Displays all panels in the initial panel set of this resource file

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this ride:
"* A panel is added to the initial panel set
"* A panel is deleted from the initial panel set
"* For the set of initial panels:
"* SetUpBGs

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* **

*/
#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */

/* One include for each panel in initial panel set */
#include "panSetUpBGs.h"

FUNCTION VOID BGSetupCreateInitialPanels 0I
/* Show panels */

SetUpBGsCreatePanel (NULL, WPTPREFERRED);

145

**** TAE Plus Code Generator version Tue May 26 14:13:2, EDT 1992**
**** File: BGSetup-init~pan.c *** */
**** Generated: Jan 19 11:14:17 1993**

"* PURPOSE:
"* Initialize all panels in the resource fie.

*REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is deleted
"* A new panel is added
"* A panel's name is changed (not title)
"* For the panels:
"* AcftLoad, AirData, BGData, BGShips, CloseAll, DeIBG, DeleteSh,
"* DelShip, Dtg, F44Fuel, F76Fuel, LackData, NewBG, OrdData,
"* OrdLoad, OrdSel, PrintJob, SaveNewB, SeIBG, SetUpBGs, Ship,

"* CHANGE LOG:
"* 19-Jan-93 Initially generated...TAE

#include "taeconf.inp"
#include Iwptinc.inp"
#include *'symntab.inc"
#include "global.h" /* Application globals *

/* One "include" for each panel in resource file *
#include "pan-AcftLoad.h"
#include 'pan-AirData.h"
#include ."pan-BGData.h"
#include "pan-BGShips.h"
#include "pan CloseAlf.h"
#include "pan-DelBG.h"
#include "pan..DeleteSh.h"
#include "pan-DelShip.h"
#include .pan -Dtg.h"
#include "pan -Y44Fuel.h"
#include .pan -F76Fuel.h"
#include "panj- ackData~h"
#include "pan -NewBG.h"
#include "pan-OrdData.h"
#include "pan-OrdLoad.h"
#include "pan-OrdSel.h"
#include "pan-PrintJob.h"
#include "pan...SaveNewB.h"
#include *pan-SeIBG.h"
#include ."pan-SetUpBGs.h"
#include "pan-Ship.h"

FUNCTION VOID BGSetup-InitializeAllPanels (resfileSpec)
TEXT *resfileSpec;

extern Id CoFind 0:,
extern Id CoNew 0;
Id vmCollection ;

/* read resource file *
vmCollection = CoNew (PABORT):
CoReadFile (vmCollection, resfileSpec, PABORT);,

146

f* initialize view and target Vm objects for each panel *
AcftLoadInifialize Panel (vmCollection);
AirData I nitialize-Panel (vmCol1ection)-,
BGDataInitialize Panel (vmCollection);
BGShips-jnitialize...Panel (vmCollection);
CloseAll-Initialize Panel (vmCollection);
DeIBGInitialize-Panel (vmCollection);,
DeleteSh Inifialize-Panel (vmCollection);
DelShip-jnitialize.Panei (vmCollection),
DtgInitialize_Panel (vmCollection);,
F44FueI_-Initialize-Panel (vmCollection);
F76Fuel_-Initialize-Panel (vmCollection);
LackDataInitialize Panel (vmCollection):,
NewBGInitialize Panel (vmCollection);
OrdData Initialize Panel (vmCollection);
OrdeLa-ntalz-ae (vmColleciion);

Or~lInitialize Panel (vmCollection);,
PrintlJob_-Initializ-e Panel (vmCollection),
SaveNewBInitialitze Panel (vmCollection);,
SelBGInitializePanel (vmCollection);
SetUpBGs initialize-Panel (vmCollection)-;
ShipjInitializePanel (vmCollection);

147

/* TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: Imakefile *** */
/**** Generated: Nov 27 11:24:06 1992 * */1* *•**•************ ************•******

* PURPOSE:
"* This is the Imakefile of a C application generated by the TAE Plus
"* Code Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* 1. To build your application, type "make". The Makefile generated
* by the TAE code generator invokes imake using this Imakefile to
* generate an application specific Makefile.

* 2. If you change the name of your resource file or application, you
* will need to either edit this file, or just delete it and regenerate
* the code.

* 3. Edit this file to include your application specific source files.

*/

#define GeneratedApplication

/* PROGRAMMER NOTE:
"* Add a line '#include "Imake.RESFILENAME"' for each resource file in
"* your application.
*/

#include "Imake.BGSetup"

/* PROGRAMMER NOTE:"* Insert application specific build parameters. These override
"* definitions in the configuration files in STAE/config.
*/

CDEBUGFLAGS =
LDDEBUGFLAGS =

APP CFLAGS =
APP_LOADFLAGS

APP_LINKLIBS = -L/h/Nauticus/libs -IVids
APP DEPLIBS = $(DEPLIBS)

APPCINCLUDES = -L81 i AiL-NC'C
-I/h/Nauticus/include/vids/Vids.h\
-l/h/bglcss/scripts/gui/setup/bg.h

PROGRAM = BGSetup

/* PROGRAMMER NOTE:"* Add $(SRCSRESFILENAME) and $(OBJSRESFILENAME) for each resource file
"* in your application.
./

GENSRCS = $(PROGRAM).c $(SRCSBGSetup)
GENOBJS = $(PROGRAM).o $(OBJSBGSetup)

/* PROGRAMMER NOTE:
"* Add your application specific srcs and object files (that are not
"* generated by the code generator) here.
*/

APPSRCS = bg.c
APPOBJS = bg.o

148

/* Macro (defined in TAEmake.tmpl) to generate Makefile targets.*/
CApplication($(PROGRAM))

149

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * /
/**** File: panBGData.c *** */
/*"* Generated: Jan 19 11:14:17 1993 ***1***
* PURPOSE:
"* This file encapsulates the TAE Plus panel: BGData
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* #include "panBGData.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panBGData.h"

/* One "include" for each connected panel */
#include "panBGShips.h"
#include "panDeleteSh.h"
#include "panShip.h"

/*BERN*/
#include "panSetUpBGs.h"

/*BERN*/
extern void CancelBG0;
extern int GetBGO;
extern int GetBGs0;
extern void ShowBG0;
extern void ShowBGShipso;

Id BGDataTarget, BGDataView, BGDatald;
/* BGDataDispatch is defined at the end of this file */

* ***

* Initialize the view and target of this panel.
*/
FUNCTION VOID BGDataInitializePanel (vmCollection)

Id vmCollection;

Id Co_Find 0;

BGDataView = Co Find (vmCollection, "BGData-v");
BGDataTarget = Co._Find (vmCollection. "BGData-t"):

* ***

* Create the panel object and display it on the screen.
*/
FUNCTION VOID BGDataCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

/*BERN*/
int BGIndex:
BGInfo BGs[MAXBGS];

if (BGDataId)
printf ("Panel (BGData) is already displayed.\n"):

150

else
BGDatald = WptNewPanel (Default-Display, BGDataTarget,
BGDataView, relativeWindow, BGDataDispatch, flags);

BGlndex = GetBGs(BGs);

BGIndex = GetBG(StringParm(SetUpBGsTarget,"BGList"), BGIndex);

ShowBG(BGs, BGIndex, BGDatald);

ShowBGShips(BGlndex, BGDatald, "BGShips");

* ***;*****

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/
FUNCTION VOID BGDataDestroyPanel)

CancelBG(BGDataId);
WptPanelErase(BGDatald);
BGDatald=0;

* Connect to this panel. Create it or change it's state.
*/
FUNCTION VOID BGDataConnect_Panel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;
I
if (BGDatald)

WptSetPanelState (BGDatald, flags);
else

BGData_CreatePanel (relativeWindow, flags);

* Handle event from parameter: AddShip
*/

EVENTHANDLER AddShipEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
BGShipsConnectPanel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Close
* */

EVENT HANDLER CloseEvent (value, count)
TEXTI *valuefl; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
BGDataDestroy-Panel O;
/* End generated code for Connection */

151

1* ********•**•******

* Handle event from parameter: Delete
*/
EVENTHANDLER DeleteEvent (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
DeleteSh Connect Panel (NULL, WPT PREFERRED):
/* End generated code for Connection */

* Handle event from parameter: Edit
*/

EVENTHANDLER EditEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
Ship_ConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Help
*/

EVENTHANDLER HelpEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

* Handle event from parameter: Save
*/

EVENTHANDLER SaveEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

struct DISPATCH BGDataDispatch[] = I
I"AddShip", AddShip-Event),
("Close", CloseEvent 1,
("Delete", DeleteEvent).
"Edit", Edit Event),
"Help", HelpEvent I,

I"Save", SaveEvent).
(NULL, NULL) /* terminator entry */

I;

152

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *
/**** File: panBGData.h *** */
/**** Generated: Jan 19 13:12:17 1993 ****/

* PURPOSE:
* Header file for panel: BGData

* REGENERATED:
"* Thu following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* BGData

* CHANGE LOG:
* 19-jan-93 Initially generated... TAE
* **

*/

#ifndef I_PANBGData /* prevent double include */
#define IPAN_BGData 0

/* Vm objects and panel Id. */
extern Id BGDataTarget, BGDataView, BGDavald;

/* Dispatch table (global for calls to Wpt_NewPanel) */
extern struct DISPATCH BGDataDispatch[];

/* Initialize BGDataTarget and BGDataView */
extern VOID BGData_InitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID BGDataCreate_Panei 0;

/* Destroy this panel and erase it from the screen */
extem VOID BGData_Destroy_Panel 0;

/* Connect to this panel. Create it or change it's state */
extem VOID BGDataConnectPanel 0;
#endif

153

/* * TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panBGShips.c *** */
*,*** Generated: Jan 19 11:14:17 1993 *** */

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: BGShips
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* #include "panBGShips.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.
, •*******************•*•*** *********•**- ".,***************t *•*•****

*/

#include "taeconf.inp"
#include "'wptinc.inp"
#include "global.h" /* Application globals */
#include "panBGShips.h"

/* One "include" for each connected panel */
#include "panShip.h"

/*BERN*/
#include .'panNewBG.h"
#include "panSetUpBGs.h"
#include "panBGData.h"

extera void ShowNavyShipso;
extern int GetBGsO;
extern int GetBGShipso;
extern int GetBGO;
extern void ShowBGShipso;
extem char* AddShip);
extern void SaveBGShipso;

Id BGShipsTarget, BGShipsView, BGShipsld;
/* BGShipsDispatch is defined at the end of this file */

* Initialize the view and target of this panel.
*/

FUNCTION VOID BGShipsInitializePanel (vmCollection)
Id vmCollection;i
Id Co_Find 0:

BGShipsView = Co Find (vmCollection. "BGShips-v"):
BGShipsTarget = CoFind (vmCollection, "BGShips-t");

* Create the panel object and display it on the screen.
*/

FUNCTION VOID BGShipsCreate_Panel (relativeWindow. flags)
Window relativeWindow:
COUNT flags;

/*BERN*/
TEXT* bgname 11;:
int BGlndex = 0:

if (FtGShipsld)I

154

pnintf ("Panel (BOShips) is already displayed.Vi");
)else(

BGShipsld =Wpt-NewPanel (Default-Display, BGShipsTarget.
BGShipsView. relativeWindow. BGShipsDispatch, flags):

/*pass new BG Name firom appropriate panel to BG Ships panel*/
if (NewBGld) I

strcpy(bgnanie[O], StringParmn(NewBGTarget,"Name'));,
IelseI

bgnamel0l = StringParm(BCU~ataTarget,"Namne");

VmSetString(BGShipsViewName.textstrs", 1 bgnamne,P,..UPDATE);

Wpt-ViewUpdate(BGShipsld,"Name"., BGShipsView,"Name"):

ShowNavyShips(BGShipsld'"NavyShips");

if (BGDatald) I
BGlndex = GetBG(bgnaxne[OLBGIndex);
ShowBGShips(BGlndex, BGShipsld. "BGShips"),

"* Erases a panel from the screen and de-allocate the associated panel
"* object.

FUNCTION VOID BGShipsjDestroy-Panel (

Wptj~ane1Erase(BGShipsId):,
BGShipsld=O0;

*Connect to this panel. Create it or change it's state.

FUNCTION VOID BGShips-ConnectPanel (relativeWindow, flags)
Window relativeWindow,
COUNT flags-,

if (BGShipsld)
Wpt_SetPanelState (BGShipsld. flags);

else
BGShips-CreatePanel (relativeWindow, flags)-,

*Handle event from parameter: AddS hipToBG

EVENTHANDLER AddShipToBGEvent (value. count)
TEXT *value[]: /* string pointers *

* FUNINT count, /* num of values *

/*BERN~.*/
BGlnfo BGs[MAXBGS];
F76ShipTypeinfo F76TableIMAXSHIFI'YPESI;
in(NewBG:
hit NewShip:,

155

NewBG = GetBGs(BGs);

NewBG = GetBG(StringParm(NewBGTarget,"Name"), NewBG);

NewShip = GetBGShips(BGs, NewBG, F76Table),

AddShip(BGsNewBGNewShip,
StringParm(BGShipsTarget,"NavyShips"));

SaveBGShips(BGs, NewBG);

ShowBGShips(NewBG.BGS iipsld, "BGShips");

* ************************* **

* Handle event from parameter: Close
*/

EVENTHANDLER CloseEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
BGShipsDestroyPanel 0;
/* End generated code for Connection */

**

* Handle event from parameter: EditShip
*/

EVENTHANDLER EditShipEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
BGShips_-DestroyPanel 0;
Ship_ConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Help
*/

EVENTHANDLER HelpEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

* Handle event from parameter: RemoveFromBG
*/

EVENTHANDLER RemoveFromBGEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

* Handle event from parameter: SaveBGShips
*/

EVENTHANDLER SaveBGShipsEvent (value, count)

156

TEXT *value[]; /'* string pointers *
FUNINT count;, /* num of values ~

struct DISPATCH BGShipsDispatchl]=I
I "AddShipToBG", AddShipToBGEvent),
""Close", Close E vent I,
("EditShip". EiS hip.Event I
""Help", Help_.Event),
""RemoveFromBG", RemoveFromBGEvent).
"I"SaveBGShips", SaveBGShips-Event),
(NULL, NULL) /* terminator entry ~

157

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panBGShips.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***

"* PURPOSE:
"* Header file for panel: BGShips

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* BGShips

"* CHANGE LOG:
"* 19-Jan-93 Initially generated...TAE
* **

*/

#ifndef I PANBGShips /* prevent double include */
#define IPAN_BGShips 0

/* Vm objects and panel Id. */
extern Id BGShipsTarget, BGShipsView, BGShipsld;

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH BGShipsDispatch[];

1* Initialize BGShipsTarget and BGShipsView */
extern VOID BGShipsInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID BGShipsCreatePanel ();

/* Destroy this panel and erase it from the screen */
extem VOID BGShipsDestroy.Panel 0;

/* Connect to this panel. Create it or change it's state */
extern VOID BGShipsConnectPanel 0;
#endif

158

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/* *** File: pan CloseAll.c *
/,***

"/* Generated: Jan 19 11:14:17 1993 ***

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: CloseAll
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* #include "panCloseAll.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /I Application globals */
#include "panCloseAll.h"

Id CloseAllTarget, CloseAllView, CloseAllld;
/* CloseAllDispatch is defined at the end of this file */

1* •********************************•*********************************•*•**

* Initialize the view and target of this panel.
*/
FUNCTION VOID CloseAllInitializePanel (vmCollection)

Id vmColection;i
Id CoFind 0;

CloseAllView = CoFind (vmCollection, "CloseAllv");
CloseAllTarget = CoFind (vmCollection, "CloseAll-t");

* Create the panel object and display it on the screen.
*/

FUNCTION VOID CloseAllCreate-Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;
I
if (CloseAllld)

printf ("Panel (CloseAll) is already displayed.\n");
else

CloseAl~ld = WptNewPanel(DefaultDisplay, CloseAllTarget.
CloseAllView, relativeWindow. CloseAllDispatch, flags)-

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/
FUNCTION VOID CloseAllDestroy_Panel 0

Wpt_PanelErase(CloseAlUd);
CloseAlld=O;

* Connect to this panel. Create it or change it's state.
*/
FUNCTION VOID CloseAllConnectPanel (relativeWindow, flags)

159

Window relativeWindow;
COUNT flags;I
if (CloseAllld)

WptSetPanelState (CloseAllld, flags);
else

CloseAllCreatePanel (relativeWindow. flags):

* Handle event from parameter: message
*/

EVENTHANDLER messageEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
I
/* Begin generated code for Connection */
if (count <= 0)

/* null value or no value */
else if (sequal (value[0], "OK"))

I
CloseAllDestroy_Panel 0;
SETAPPLICATIONDONE;

else if (sequal (value[01, "Cancel"))I
CloseAllDestroy_Panel 0;
I

/* End generated code for Connection */

struct DISPATCH CloseAliDispatch] ={
I "message". message-Event),
INULL. NULL) /* terminator entry */

160

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panCloseAll.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***
/**

"* PURPOSE:
"* Header file for panel: CloseAll

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
* For panel:
* CloseAll

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

*/

#ifndef I_PAN_CloseAII /* prevent double include */
#define I_PAN_CloseAll 0

/* Vm objects and panel Id. */
extem Id CloseAllTarget, CloseAllView, CloseAlild;

/* Dispatch table (global for calls to Wpt-NewPanel) */
extem struct DISPATCH CloseAliDispatchi];

/* Initialize CloseAllTarget and CloseAllView */
extem VOID CloseAllInitializePanel 0(

/* Create this panel and display it on the screen */
extem VOID CloseAll_CreatePanel 0;

/* Destroy this panel and erase it from the screen *[
extern VOID CloseAllDestroyPanel 0:

/* Connect to this panel. Create it or change it's state *I
extem VOID CloseAllConnectPanel 0:
#endif

161

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: pan DelBG.c *** */
/**** Generated: Feb 8 10:13:45 1993 ***
* ***

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: DeIBG
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "panDelBG.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

* For the panel items:
* Message

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panDelBG.h"

/* One "include" for each connected panel */

/*BERN*/
#include "panSetUpBGs.h"

extern int GetBGs0;
extern int GetBG0;
extern void DeleteBG0;
extern void SaveBGso;
extern void ShowBGs0;

Id DelBGTarget, DelBGView, DeIBGId;
/* DelBGDispatch is defined at the end of this file */
1* **

* Initialize the view and target of this panel.
*/

FUNCTION VOID DeIBGInitializePanel (vmCollection)
Id vmCollection;I
Id CoFind 0;

DeIBGView = CoFind (vmCollection, "DeIBGv");
DeiBGTarget = Co-Find (vmCollection, "DeIBG t"):

* Create the panel object and display it on the screen.
*/

FUNCTION VOID DeIBG Create Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (DeIBGId)

printf ("Panel (DeIBG) is already displayed.n"):
else

162

DeIBGId = WptNewPanel (DefaultDisplay, DelBGTarget, DeIBGView,
relativeWindow, DelBGDispatch, flags);

1* ************************************•*********************** ************

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/

FUNCTION VOID DeIBGDestroy_Panel 0I
Wpt_PanelErase(DeIBGId);
DeIBGId=O;

/* *********•**•*******************

* Connect to this panel. Create it or change it's state.
*/

FUNCTION VOID DeIBGConnect-Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (DeIBGId)

Wpt_SetPanelState (DeIBGId. flags);
else

DelBGCreatePanel (relativeWindow, flags);

* ********** *********•**** ******* **********t,***********.*** *********•******

* Handle event from parameter: Message
*/

EVENTHANDLER Message-Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count, /* num of values */I

/*BERN*/
BGInfo BGs[MAXBGSI:
int BGToDelete;
int BGIndex;

/* Begin generated code for Connection */

if (count <= 0)
;/* null value or no value */

else if (s_equal (value[O0, "OK"))

BGIndex = GetBGs(BGs);

BGToDelete=GetBG(StringParm (SetUpBGsTarget,"BGList"), BGIndex);

DeleteBG(BGs,BGToDelete);

SaveBGs(BGs);

ShowBGs(SetUpBGsld,"BGList");

DelBGDestroyPanel 0;

else if (s-equal (value[01, "Cancel"))

163

DelBGDestroyPanel 0;

/* End generated code for Connection */

struct DISPATCH DelBGDispatch[] = I
""Message", Message-Event I,
NULL, NULL I /* terminator entry */

I;

164

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
"/** File: pan DeIBG.h *** */
"/*** Generated: Jan 19 13:12:17 1993 ***
/* **
* PURPOSE:
* Header file for panel: DelBG

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* DeIBG

"* CHANGE LOG:
"* 19-Jan-93 Initially generated ...TAE
* **

*/

#ifndef I PANDelBG /* prevent double include */
#define I_PAN_DeIBG 0

/* Vm objects and panel Id. */
extern Id DelBGTarget, DelBGView, DeIBGId;

/* Dispatch table (global for calls to WptNewPanel) */
extem struct DISPATCH DeiBGDispatch[];

/* Initialize DelBGTarget and DelBGView */
extem VOID DeIBGInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID DeIBGCreate_Panel 0;

/* Destroy this panel and erase it from the screen */
extern VOID DelBGDestroyPanel 0;

/* Connect to this panel. Create it or change it's state */
extern VOID DeIBGConnectPanel 0:
#endif

165

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: panDtg.c *** */
/**** Generated: Feb 8 10:13:45 1993 ****/
/, **

" PURPOSE:
"* This file encapsulates the TAE Plus panel: Dtg
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "panDtg.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* For the panel items:
"* Message

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panDtg.h"

/* One "include" for each connected panel */

Id DtgTarget, DtgView, Dtgld;
/* DtgDispatch is defined at the end of this file *

1* ***************************•***

* Initialize the view and target of this panel.
*/

FUNCTION VOID DtgInitializePanel (vmCollection)
Id vmCollection;
I
Id CoFind 0;

DtgView = CoFind (vmCollection, "Dtg_v");
DtgTarget = CoFind (vmCollection, "Dtgj");

* ***

* Create the panel object and display it on the screen.
*/
FUNCTION VOID DtgCreate_Panel (relativeWindow. flags)

Window relativeWindow;
COUNT flags;I
if (Dtgld)

printf ("Panel (Dtg) is already displayedMn");
else

Dtgld = WptNewPanel (Default-Display, DtgTarget, DtgView,
relativeWindow, DtgDispatch, flags);

* ***************** * * ***

* Erases a panel from the screen and de-allocate the associated panel
* object.
*/

FUNCTION VOID DtgDestroyPanel 0

166

WptPanelErase(Dtgld);
Dtgld=O;

]** ********•************ ***

* Connect to this panel. Create it or change it's state.
./

FUNCTION VOIT DtgConnect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (Dtgld)

Wpt_SetPanelState (Dtgld, flags);
else

Dtg__Create_Panel (relativeWindow, flags);

* Handle event from parameter: Message
*/

EVENTH L NDLER Message-Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */

if (count <= 0)
/* null value or no value */

else if (sequal (value[01, "OK"))I
Dtg_Destroyanel 0;I

else if (sequal (value[01, "Cancel"))
I
DtgDestroyPanel 0;

/* End generated code for Connection */

struct DISPATCH DtgDispatch[} = I
I"Message". MessageEvent),
(NULL, NULL) /* terminator entry */

167

/**** TAE Plus Code Generator version Tue May 2o 14:13:27 EDT 1992 *** */
/**** File: panDtg.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***
/,***
"* PURPOSE:
"* Header file for panel: Dig

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this fde:
"* The panel's name is changed (not title)
"* For panel:
"* Dig

"* CHANGE LOG:
"* 19-Jan-93 Initially gencrated...TAE

#ifndef IPANDtg /* prevent double include */
#define 17PPA•N•Dtg 0

/* Vm objects and panel Id. */
extern Id DtgTarget, DtgView, Dtgld;

/* Dispatch table (global for calls to Wpt-NewPanel) */
extern struct DISPATCH DtgDispatch[];

/* Initialize DtgTarge, and DtgView */
extem VOID DtgInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID DtgCreatePanel ();

/* Destroy this panel and erase it from the screen */
extern VOID DtgDestroyPanel 0;

/* Connect to this panel. Create it or change it's state *I
exterr VOID DtgConnectPane! 0;
#endif

168

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/**** File: pan_LackData.c *** */
/**** Generated: Feb 8 10:13:45 1993 ***1* *****************. *** ********* l************•*********************4**** **

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: LackData
* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* #include "panLackData.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Taret, and View are provided.

* For the panel items:
* Message

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
* ***** *:l************************•***************•**********•********* **********

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include ".panLackData.h"

/* One "include" for each connected panel */

ld LackDataTarget, LackDataView, LackDatald;
/* LackDataDispatch is defined at the end of this file */

/****** ******************* **************************** ************ *********

* Initialize the view and target of this panel.*/
FUNCTION VOID LackData_InitializePanel (vmCollection)

Id vmCollection:I
Id Co Find 0;

LackDataView = CoFind (vmCollection, "LackData_v"):
LackDataTarget = CoFind (vmCollection, "LackDatat");

* ** •1** *******************l****************************,*************** * * *

* Create the panel object and display it on the screen.

FUNCTION VOID LackDataCreatePanel (relativeWindow. flags)
Window relativeWindow:
COUNT flags:

if (LackDatadd)
printl ("Panel (LackData) is already displayed.\n");

else
LackDatald =WptNewPanel (DefaultDisplay, LackDataTarget.
LackDataView. relativeWindow, LackDataDispatch, flags):

/******•* *** ******************* ****** ******** ***** ********** ***************

"* Erases a panel from the screen and de-allocate the associated panel
"* objccl.
*/

FUNCTION VOID LackDataDestroyPanel ()

161)

Wpt_PanelErase(LackDatald);
LackDatald=0;

* Connect to this panel. Create it or change it's state.
*/

FUNCTION VOID LackDataConnect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;
I
if (LackDatald)

WptSetPanelState (LackDataId, flags);
else

LackDataCreatePanel (relativeWindow, flags);

* Handle event from parameter: Message
*/
EVENTHANDLER MessageEvent (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */

if (count <= 0)
/* null value or no value */

else if (s5equal (value[01, "OK"))I
LackDataDestroyPanel 0;I

else if (s-equal (value[0], "Cancel"))I
LackDataDestroyPanel O;I

/* End generated code for Connection */

struct DISPATCH LackDataDispatch[] =
("Message", MessageEvent),
IJNULL. NULL) /* terminator entry */

170

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panLackData.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***
/, **
"* PURPOSE:
"* Header file for panel: LackData

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* LackData

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

*1

#iftidef IPANLackData /* prevent double include */
#define IPANLackData 0

/* Vm objects and panel Id. */
extern Id LackDataTarget, LackDataView, LackDatald;

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH LackDataDispatch[];

/* Initialize LackDataTarget and LackDataView */
extem VOID LackDataInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID LackDataCreatePanel 0,

/* Destroy this panel and erase it from the screen */
extern VOID LackDataDestroy_Panel ();

/* Connect to this panel. Create it or change it's state */
extern VOID LackDataConnectPanel ()
#endif

171

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: panNewBG.c *** */
/**** Generated: Jan 19 11:14:17 1993 ***
/,***
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: NewBG
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* *#include "panNewBG.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.
* **

*/

#include -taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include .panNewBG.h"
/* One "include" for each connected panel */
#include "panBGShips.h"

/*BERN*/
#include '"panLackData.h"
#include "panSetUpBGs.h"
#include "pan_SaveNewB.h"

/*BERN*/
extern int GetBGso;
extern int MakeBG0;
extern void SaveBGs0;

int SaveFlag = 0;

Id NewBGTarget, NewBGView, NewBGld;
/* NewBGDispatch is defined at the end of this file */

1* **

* Initialize the view and target of this panel.
*/

FUNCTION VOID NewBGInitializePanel (vmCollection)
Id vmCollection;
I
Id CoFind 0:

NewBGView = Co Find (vmCollection, "NewBG_v");
NewBGTarget = Co-Find (vmCollection, "NewBG_t");

1/* ******•**

* Create the panel object and display it on the screen.
*/

FUNCTION VOID NewBGCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags:
I
if (NewBGld)

printf ("Panel (NewBG) is already displayed.\n");
else

NewBGld = Wpt-NewPanel (Default-Display, NewBGTarget.NewBGView,
relativeWindow. NewBGDispatch, flags);

172

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/

FUNCTION VOID NewBGDestroyPanel 0I
WptPanelErase(NewBGId);
NewBGId=O;

* Connect to this panel. Create it or change it's state.
*/

FUNCTION VOID NewBG_ConnectPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (NewBGId)

WptSetPanelState (NewBGId, flags);
else

NewBG_Create_Panel (relativeWindow, flags):

* Handle event from parameter: Close
,/

EVENT HANDLER Close-Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

if (SaveFlag ==
/* Begin default generated code */

NewBGDestroyPanel 0;
/* End generated code for Connection */

I else (
SaveNewBConnectPanel(NULL, WPTPREFERRED);

* Handle event from parameter: Help
*/

EVENT HANDLER Help-Event (value, count)
TEXT *value[], /* string pointers */
FUNINT count; /* num of values */

* Handle event from parameter: Save

EVENTHANDLER Save-Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count, /* num of values */

BGlnfo BGs[MAXBGS1;
int BGIndex:

173

BGlndex =GetBGs(BGs);,

if (MakeBG(BGs,BGlndex,StringParm(NewBGTarget."Name"),
StringParm(NewBGTarget,"Designation"),
RealParm (NewBGTarget,"FuelRes"),
RealParm (NewBGTarget,"CLFFueIRes-),
RealParm (NewBGTarget,"OrdRes"),
RealPann (NewBGTargetCLFOrdRes").
RealParm (NewBGTarget,"MaxF76"),
RealParm (NewBGTarget,"MaxF44"),
RealParm (NewBGTarget,"StationSpeed"),
RealParni (NewBGrarget,'UnrepSpeed"),
RealParm (NewBGTarget."AcftShipSpeed")))I

SaveBGs(BGs),

/*refiresh the BGList in setupbgs panel*/
BGlndex = GetBGs(BGs);

ShowBGs(SezUpBGsId,"BGList");

SaveFlag = 1;

/* Begin generated code for Connection *
BGShipsConnectPanel (NULL, WPT PREFERRED);
/'* End generated code for Connection *

elseI
LackDataConnectPanel(NULL,WPTPREFERRED);,

struct DISPATCH NewBGDispatcht] =
("Close", CloseEvent I
I("Help", Help-Event)I,
""Save". SaveEvent),.
NULL, NULL)1 /* terminator entry ~

174

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/**** File: panNewBG.h *** */
"/* ** Generated: Jan 19 13:12:17 1993 ***/* **

"* PURPOSE:
"* Header file for panel: NewBG
,

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
* For panel:
* NewBG

*CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

#ifndef IPANNewBG /* prevent double include */
#define IPANNewBG 0

/* Vm objects and panel Id. */
extern Id NewBGTarget, NewBGView, NewBGId;

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH NewBGDispatch[];

/* Initialize NewBGTarget and NewBGView */
extern VOID NewBGInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID NewBGCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID NewBGjDestroyPanel 0;

/* Connect to this panel. Create it or change it's state */
extern VOID NewBGConnectPanel O:
#endif

175

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panSaveNewB.c *** */
/**** Generated: Feb 8 10:13:45 1993 ***
/* **
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: SaveNewB
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "pan.SaveNewB.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* For the panel items:
"* Message

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panSaveNewB.h"

/*BERN*/
#include "panSetUpBGs.h"
#include "panBGShips.h"
#include "panNewBG.h"
#include "panLackDatah"

extern int SaveNewBGO;

Id SaveNewBTarget, SaveNewBView, SaveNewBid;
/* SaveNewBDispatch is defined at the end of this file */

* Initialize the view and target of this panel.
*/

FUNCTION VOID SaveNewBInitializePanel (vmCollection)
Id vmCollection;

Id CoFind 0;

SaveNewBView = Co Find (vmCollection, "SaveNewB_v");
SaveNewBTarget = CoFind (vmCollection, "SaveNewB_t");

* Create the panel object and display it on the screen.
*/

FUNCTION VOID SaveNewBCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags,

if (SaveNewBId)
printf ("Panel (SaveNewB) is already displayed.\n");

else
SaveNewBld = Wpt-NewPanel (Default-Display,
SaveNewBTarget,SaveNewBView, relativeWindow,
SaveNewBDispatch, flags);

176

,* ************ ***********************31*****************•********************

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/
FUNCTION VOID SaveNewB_Destroy_Panel 0f

Wpt_PanelErase(SaveNewBId),
SaveNewBld=O;

* Connect to this panel. Create it or change it's state.
*/
FUNCTION VOID SaveNewBConnectPanel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;
I
if (SaveNewBId)

Wpt_SetPaneiState (SaveNewBId, flags);
else

SaveNewBCreatePanel (relativeWindow, flags);

* Handle event from parameter: Message
*/

EVENT HANDLER Message-Event (value, count)
TEXT *value[]; P* string pointers */
FUNINT count; /* num of values */

/*BERN*/
int BGIndex;
BGInfo BGs[MAXBGS];

/* Begin generated code for Connection */

if (count <= 0)
P/ null value or no value */

else if (s equal (value[01, "OK"))

if (SaveNewBG(NewBGTarget) == 1)

BGlndex = GetBGs(BGs);

ShowBGs(SetUpBGsld,"BGList"):

BGShipsConnectPanel (NULL, WPTPREFERRED);

SaveNewBDestroyPanel 0:

lelse I

SaveNewBDestroyPanel 0:

LackDataConnectPanel(NULL.WPTPREFERRED):

177

else if (s-equal (value(Ol, "Cancel"))I
NewBGDestroyPanelO;

SaveNewBDestroyPanel 0;

/* End generated code for Connection */

struct DISPATCH SaveNewBDispatch[=I
"I"Message", MessageEvent },
INULL, NULL) /* terminator entry */

I:

178

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panSaveNewB.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***
/* **
"* PURPOSE:
"* Header file for panel: SaveNewB

* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* The panel's name is changed (not title)
* For panel:
* SaveNewB

* CHANGE LOG:

* 19-Jan-93 Initially generated...TAE

*/

#ifndef IPANSaveNewB /* prevent double include */
#define IPANSaveNewB 0

/* Vm objects and panel Id. */
extern Id SaveNewBTarget. SaveNewBView, SaveNewBId:

/* Dispatch table (global for calls to Wpt-NewPanel) */
extern struct DISPATCH SaveNewBDispatch[lj

/* Initialize SaveNewBTarget and SaveNewBView */
extern VOID SaveNewBInitializePanel O;

/* Create this panel and display it on the screen */
extern VOID SaveNewBCreatePanel O:

/* Destroy this panel and erase it from the screen */
extern VOID SaveNewBDestroy-Panel ();

/* Connect to this panel. Create it or change it's state */
extern VOID SaveNewBConnectPanel 0;
#endif

179

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panSelBG.c *** */
/**** Generated: Feb 8 10:13:45 1993 ***1***
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: SelBG
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* *#include "panSelBG.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* For the panel items:
"* Message

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
******************•*******************************:*******************•***** *

./

#include "'taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panSelBG.h"

/* One "include" for each connected panel */

Id SelBGTarget, SeIBGView, SelBGId;
/* SelBGDispatch is defined at the end of this file */

* Initialize the view and target of this panel.
*/

FUNCTION VOID SelBGInitializePanel (vmCollection)
Id vmCollection;I
Id CoFind 0;

SelBGView = CoFind (vmCollection, "SeIBG v");
SelBGTarget = CoFind (vmCollection, "'SeIBG_t");

* Create the panel object and display it on the screen.

FUNCTION VOID SelBGCreate_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;
I
if (SeiBGId)

prinff ("Panel (SelBG) is already displayed.\n");
else

SelBGId = WptNewPanel (DefaultDisplay, SelBGTarget, SelBGView,
relativeWindow, SelBGDispatch, flags);

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/

180

FUNCTION VOID SelBGDestroyPanel 0

WptPanelErase(SeIBGld);
SeIBGld=O;

* Connect to this panel. Create it or change it's state.

FUNCTICN VOID SeIBG ConnectLPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (SeIBGId)

WptSetPanelState (SeIBGId, flags);
else

SeIBGCreatePanel (relativeWindow, flags);

* Handle event from parameter: Message
*/

EVENTHANDLER Message_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
I
/* Begin generated code for Connection */

if (count <= 0)
/* null value or no value */

else if (s equal (value[0], "OK"))
I
SeIBGDestroy-Panel O:
I

else if (sequal (value[O], "Cancel"))
I
SeIBGDestroyPanel O;

/* End generated code for Connection */
I

struct DISPATCH SeiBGDispatch[] = I
"I"Message". MessageEvent I,
INULL, NULL} /* terminator entry */

I;

181

/**** TAE Plus Code Generator ,ersioit Tue May 26 14:13:27 EDi iM92 ****/
/**** File: pan_SzIBG.h *** */
/* Generated: Jan 19 13:12:17 1993 ****,'
/,***
"* PURPOSE:
"* Header file for panel: SeIBG

* REGENERATED:
"* The following WorkBench operations will cause regeneration u,, :.is file:
"* The panel's name is changed (not title)
"* For panel:
"* SeIBG
,

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* ************************************* ******~********** ******** ************

*/

#ifndef I_PANSeIBG /* prevent double include */
#define I_PANSelBG 0

/* Vm objects and panel Id. */
extern Id SelBGTarget, SeIBGView, SelBGId:

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH SelBGDispatchf]:

/* Initialize SelBGTarget and SeIBGView */
extern VOID SelBGInitializePanel 0:

/* Create this panel and display it on the screen */
extern VOID SeIBGCreatePanel 0:

/* Destroy this panel and erase it from the screen */
extern VOID SelBGDestroyPanel 0;

/* Connect to this panel. Create it or change it's state */
extern VOID SeIBGConnectPanel 0;
#endif

l 2

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *
/* * File: panSetUpBGs.c *** */
/* *** Generated: Jan 19 11:14:17 1993 ** *

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: SetUpBGs
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "pan,_SetUpBGs.h'-. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

#include "taeconf.inp"
#include 'wptinc.inp'
#include .'global.h" /* Application globals */
#include 1panSetUpBGs.h"

/* One "include" for each connected panel */
#include "panCloseAll.h"
#include panDelBG.h"
#include "panBGData.h"
#include "panNewBG.h"

/*BERN*/
#include "panSeIBG.h"
#include "pan_CloseAll.h"

extern int GetBGsO;
extern void ShowBGsO;

Id SetUpBGsTarget, SetUpBGsView. SetUpBGsld;
1* SetUpBGsDispatch is defined at the end of this file */

* Initialize the view and target of this panel.
./

FUNCTION VOID SetUpBGsInitialize_Panel (vmCollection)
Id vmCollection;f
Id CoFind 0;

SetUpBGsView = Co_Find (vmCoflection. "SetUpBGs.v");
SetUpBGsTarget = CoFind (vmCollection, "SetUpBGs-t");

* Create the panel object and display it on the screen.
*!
FUNCTION VOID SetUpBGsCreatePanel (relativeWindow, flags)

Window relativeWindow;
COUNT flags;
I

/*BERN*/
BGlnfo BGs[MAXBGS];

if (SetUpBGsld)
printf ("Panel (SetUpBGs) is already displayed.n");

else
SetUpBGsld = WptNewPanel(DefaultDisplay,
SetUpBGsTarget.SetUpBGsView. relativeWindow.

183

SetUpBGsDispatch, flags);

GetBGs(BGs);

ShowBGs(SetUpBGsld,"BGList");

**

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/

FUNCTION VOID SetUpBGsDestroy_Panel 0i
WptPanelErase(SetUpBGsld):
SetUpBGsId--0;

. *****t**

* Connect to this panel. Create it or change it's state.
*/

FUNCTION VOID SetUpBGsConnectPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

if (SetUpBGsId)
Wpt_SetPanelState (SetUpBGsld, flags):

else
SetUpBGsCreatePanel (relativeWindow, flags);

.* ***************!********************* •*********************•**************

* Handle event from parameter: Close
*/

EVENTHANDLER CloseEvent (value, count)
TEXT *value[]- /* string pointers */
FUNINT count; 1* num of values */

/* Begin generated code for Connection */
CloseAllConnectPanel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

1* ******* *****************************•**********************•***************

* Handle event from parameter: Delete
,/

EVENTHANDLER DeleteEvent (value, count)
TEXT *value[], /* string pointers */
FUNINT count: /* num of values */

/*BERN*/
if (StringParm(SetUpBGsTarget,"BGList") != NULL)J

/* Begin generated code for Connection */
DeIBGConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

Selse I

SeIBGConnectPaneI(NULL, WPTPREFERRED):

184

* ***

* Handle event from parameter: Edit
*/

EVENTHANDLER EditEvent (value, count)
TEXT *value[]- /* string pointers */
FUNINT count; /* num of values */

/*BERN*/
if (StringParm(SetUpBGsTarget."BGList") != NULL)j

/* Begin generated code for Connection */
BGDataConnectPanel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

I else I

SeIBGConnectPanel(NULL, WPTPREFERRED);

* Handle event from parameter: Help
./

EVENTHANDLER HelpEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

1* **

* Handle event from parameter: New
*/

EVENTHANDLER NewEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
NewBGConnectPanel (NULL. WPTPREFERRED):
/* End generated code for Connection */

struct DISPATCH SetUpBGsDispatchI =I
"Close". CloseEvent).

"{"Delete". DeleteEvent).
"["Edit". EditEvent).
("Help", HelpEvent.
I"New", New_Event),
{NULL, NULLI /* terminator entry */

I1

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panSetUpBGs.h *** */
/**** Generated: Jan 19 13:12:17 1993 ***
/.***
"* PURPOSE:
"* Header file for panel: SetUpBGs

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* SetUpBGs

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
************* **** ****•*****************************:*****•*******•*********•*

#ifndef I PAN SetUpBGs /* prevent double include */
#define I_PANSetUpBGs 0

/* Vm objects and panel Id. */
extern Id SetUpBGsTarget, SetUpBGsView, SetUpBGsId;

/* Dispatch table (global for calls to WptNewPanel) */
extem struct DISPATCH SetUpBGsDispatch[],

/* Initialize SetUpBGsTarget and SetUpBGsView •k/
extem VOID SetUpBGsInitializePanel 0(;

/* Create this panel and display it on the screen */
extern VOID SetUpBGsCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID SetUpBGsDestroyPanel 0;

/* Connect to this panel. Create it or change it's state */
extem VOID SetUpBGsConnectPanel 0;
#endif

186

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * */
/**** File: panShip.c *** */
/**** Generated: Feb 8 10:40:35 1993 ***1***k**************
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: Ship
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "panShip.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

* For the panel items:
* Aircraft, Close, F44, F76,
* Help. Ordnance, Print, Save,

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
, ********•.************************,**

*/

#include "taeconf.inp"
#include "1wptinc.inp"
#include "global.h" i* Application globals */
#include "panShip.h"

/* One "include" for each connected panel */
#include "pan.AcftLoad.h"
#include "panF44Fuel.h"
#include "panF76Fuel.h"
#include "panOrdSel.h"
#include "panPrintJob.h"

ld ShipTarget, ShipView, Shipld;
/* ShipDispatch is defined at the end of this file */

*t****•**************************•**************. ******************** *,*****

* Initialize the view and target of this panel.
*/

FUNCTION VOID ShipInitializePanel (vmCollection)
Id vmCollection;I
ld CoFind 0;

ShipView = CoFind (vmCollection. "Ship_v");
ShipTarget = CoFind (vmCollection, "Shipt");

* Create the panel object and display it on the screen.
*1

FUNCTION VOID ShipCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

if (Shipld)
printf ("Panel (Ship) is already displayed.%i");

else
Shipld = Wpt-NewPanel (Default-Display, ShipTarget, ShipView.

relativeWindow. ShipDispatch. flags),

187

1* •**•**•**

"* Erases a panel from the screen and de-allocate the associated panel
"* object.
*/

FUNCTION VOID ShipDestroyPanel 0

WptPanelErase(Shipld);
Shipld--O;

1t* **

* Connect to this panel. Create it or change it's state.
*/

FUNCTION VOID ShipConnectPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;I
if (Shipld)

Wpt_SetPanelState (Shipid, flags),
else

ShipCreatePanel (relativeWindow, flags);

1* ************************~**

* Handle event from parameter: Aircraft
*/
EVENTHANDLER AircraftEvent (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */i
/* Begin generated code for Connection */
AcftLoadConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

1* ********************************* ***************************************

* Handle event from parameter: Close
./

EVENTHANDLER CloseEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count, /* num of values */I
/* Begin generated code for Connection */
ShipDestroyPanel 0;
/* End generated code for Connection */

* Handle event from parameter: F44
*/
EVENT-HANDLER F44 Event (value. count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
F44FuelConnect_Panel (NULL. WPTPREFERRED):

188

/* End generated code for Connection */

* Handle event from parameter: F76
*/

EVENTHANDLER F76 Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
F76FuelConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Help
*/

EVENTHANDLER Help_Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

* Handle event from parameter: Ordnance
*/

EVENTHANDLER OrdnanceEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
I
/* Begin generated code for Connection */
OrdSel ConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Print
*/

EVENTHANDLER Print-Event (value, count)
TEXT *value[l; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
PrintJobConnectPanel (NULL, WPT PREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Save
*/
EVENTHANDLER Save-Event (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

189

struct DISPATCH ShipDispatch[l j
("Aircraft", Aircraft - Event),
f "Close", Close - Event).
("F44", F44-Event
f "F76", F76-Event
J "Help", Help.Event
("Ordnance", Ordnance-Event
"Print". Print - Event),
"Save". Save-Event),
(NULLNULLI /* terminator entry

190

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: panShip.h *** */
/**** Generated: Jan 19 13:12:17 1993 * */
/* **
* PURPOSE:
* Header file for panel: Ship

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this r-de:
"* The panel's name is changed (not title)
"* For panel:
"* Ship

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* *************************************** ***********************************

*/

#ifndef IPANShip /* prevent double include */
#define IPAN-Ship 0

/* Vm objects and panel Id. */
extem Id ShipTarget, ShipView, Shipld;

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH ShipDispatch[]:

/* Initialize ShipTarget and ShipView */
extern VOID ShipInitializePanel ();

/* Create this panel and display it on the screen */
extem VOID ShipSreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID ShipDestroyPanel ():

/* Connect to this panel. Create it or change it's state */
extern VOID ShipConnect_Panel 0:
#endif

191

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: BGEvents.c *** */
/**** Generated: Jan 19 09:08:04 1993 ***
/. **

"* PURPOSE:
"* This the main program of an application generated by the TAE Plus Code
"* Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* To turn this into a real application, do the following:

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string "pan-" with the
* panel name (followed by a ".c"). Each parameter that you have defined
* to be "event-generating", has an event handler procedure in the
* appropriate panel file. Each handler has a name that is a
* concatentation of the parameter name and the string "-Event". Add
* application-dependent logic to each event handler. (As generated by
* the WorkBench, each event handler simply logs the occurrence of the
* event.)

* 2. To build the program, type "make". If the symbols TAEINC.
* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

* ADDITIONAL NOTES:
* 1. Each event handler has two ,urguments: (a) the value vector
* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass ,he value as if it were a vector with
* count 1.

* Though it's unlikely that you are interested in the value of a button
* event parameter, the values are always passed to the event handler for
* consistency.

* 2. You gain access to non-event parameters by calling the Vm package
"* using the targetld Vm objects that are created in
"* IntializeAllPanels. There are macros defined in global.h to assist
"* in accessing values in Vm objects.

"* To access panel Id, target, and view, of other panels, add an
"* '#include" statement for each appropriate panel header file.

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE

#include "taeconf.inp"
#include 'wptinc.inp"
#include "svmtab.inc"
#include "global.h" /* Application globals */

Display * DefaultDisplay:
BOOL Application-Done FALSE;

main (argc, argv)

192

FUNINT argL.
TEXT *arrgvi

"WptEvent wptEvent; /* event data */
CODE eventType:

COUNT termLines, termCols;
CODE termType,/*BERN*/rei:

/* PROGRAMMER NOTE:
* add similar extem's for each resource file in this application
*/

extern VOID BGEventsInitializeAllPanels 0;
extem VOID BGEventsCreateInitialPanels 0,

stnict DISPATCH *dp; /* working dispatch pointer *1
IMPORT struct VARIABLE *VmFindO:
struct VARIABLE *parmv: /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
t_pinit (&termLines. &termCols, &termType):

/* permit upper/lowercase file names */

f_force_lower (FALSE);

DefaultDisplay = Wptjlnit (NULL);

/* initialize resource file */
/* PROGRAMMER NOTE:
"* For each resource file in this application, calls to the appropriate
"* InitializeAllPanels and CreateInitialPanels must he added.
*/
BGEventsInitializeAll Panels ("/h/bglcss/scripts/gui/events/BGEvents.res"):
BGEventsCreateInitialPanels 0;

/*BERN*/
ret = WptSetHeipStyle ("wpthelp.res"):
if (ret != SUCCESS)
printf("Couldn't set help style\n'");

/* main event ioop */
/* PROGRAMMER NOTE:
"* use SETAPPLICATIONDONE in "quit" event handler to exit loop.
"* (SETAPPLICATIONDONE is defined in global.h)
*/
while (!ApplicationDone)

eventType = WpLNextEvent (&wptEvent): /* get next WPT event */

switch (eveniType)

case WPTPARMEVENT:

/* Event has occurred from a Panel Parm. Lookup the event
*in the dispatch table and call the associated event
* handler function.

*/

dp = (struct DISPATCH *) wptEvent.puserContext:
for (; (*dp).parmName != NULL: dp++)

193

if (sequal ((*dp).parmName, wptEvent.parmName))I
parmv = Vm-Find (wptEvent.p.dataVm, wptEvent.parmName);
(*(*dp).eventFunction)

((*parmv).v_cvp, (*parmv).v_count);
break;

break;

case WPTFILEEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle file events.
"* Use WptAddEvent and WptRemoveEvent to register and remove
* event sources.

printf ("No EVENTHANDLER for event from external source.\n");
break;

case WPTWINDOWEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle window evcnts.
"* WPT WINDOWEVENT can be caused by windows which you directly
"* create with X (not TAE panels), or by user acknowledgement
"* of a Wpt-PanelMessage (therefore no default print statement
"* is generated here).
*/

break;

case WPTTIMEOUTEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle timeout events.
"* Use WptSetTimeOut to register timeout events.
*/

printf ("No EVENT_HANDLER for timeout event.On")
break;

default:

printf("Unknown WPT Event\n"):
break;

/* end main event loop */

Wpt Finisho;/* close down all display connections */

/* PROGRAMMER NOTE:
"* Application has ended normally. Add application specific code to
"* close down your application
*/

/* end main */

194

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/*** File: BGEvents creatinit.c *** */
/**** Generated: Jan ,9 09:08:04 1993 ***
/* **
"* PURPOSE:
"* Displays all panels in the initial panel set of this resource file

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is added to the initial panel set
"* A panel is deleted from the initial panel set
"* For the set of initial panels:
"* BGEvents

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* **

*/
#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */

/* One include for each panel in initial panel set */
#include "panBGEvents.h"

FUNCTION VOID BGEventsCreateInitialPanels 01
/* Show panels */

BGEventsCreatePanel (NULL. WPTPREFERRED);

195

**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992**
**** File: BGEvents-imit-pan.c *** */
**** Generated: Feb 5 14:09:32 1993**

"* PURPOSE:
"* Initialize all panels in the resource rile.

* REGENERATED:
*The following WorkBench operations wiUl cause regeneration of this file:

* A panel is deleted
* A new panel is added
*A panel's namne is changed (not title)

*For the panels:
*AAWThret, Aircraft, AirData, ASW, ASWOrd, ASWThret, BGCrsSpd,
*BGEvents, BGShips. BGSSCom. BGSumCom, CloseAll, CommentL, Comml-ist.
*Consol, ConsolDa, ConsoiRe. DelAcft. DelComm. DelEvent, DelOrd.
*DelShip, Dtg. EditComm. EventLis. F44Fuel, F76Fuel, FuelTran.
*Latdong, OrdData, Ordnance, OrdTrans, OrdTrSel, PrintJob. Raid.
*RaidShip. SeIBG. SelOrd, SeIShi~r, SelShip. SelSumm, SetStati.
*ShCrsSpd, Ship, Shuttle, StatRes. Strike, StrikeSh. Unrep.
*UnrepDat, UnrepRes, USumComm. USumOrd

* CHANGE LOG:
*5-Feb-93 Initially generated ... TAE

#include -taeconf.inp"
#include '1wptinc.inp"
#include "symtab.inc"
#include 'global.h" f* Application globals *

/* One "include" for each panel in resource file *
#include pan-AAWThret.h"
#include "panuAircraft.h"
#include -pan..AirData.h"
#include "pan..ASW.h"
#include "pan ASWOrd.h"
#include "pan.ASWThret.h"
#include .'pan-.BGCrsSpd.h"
#include "'panuBGEvents.h"
#inclJude ..pan-BGShips.h"
#include *'panuBGSSCom.h"
#include .'pan-BGSumCom.h"
#include -pan -CloseAll.h"
#include ..pan-CommentL.h"
#include -pan..Comml-ist.h"
#include .'pan-Consol.h"
#include .*pan-ConsoiDah-
#include ..panConsolRe.h"
#include ..pan DelAcft.h"
#include ."panuDelComm.h"
#include ."pan-DelEvent.h"
#include -pan-DelOrd.h"
#include ".pan.DelShip.h"
#include .pan-Dtg.h"
#include .'pan-EditComm.h"
#include 'pan-EventLis.h"
#include ".pan-F44Fuel.h-
#include *pan-F76Fuel.h"
#include -pan-Fueffran.h-

196

#include ",pan-LatLong.h'"
#include ".pan...OrdData.h"
#mclude ",pan__Ordnance.h"
#include "pan-OrdTrans.h"*
#include ",panOrdTrSel.h"
#include ..pan-Printiob.h"
#include "pan-Raid.h"
#include "pan.aidShip.h"
#include *pan-SelBG.h"
#include "pan-SelOrd.h"
#include "pan...SelShiOr.h"
#include "pan-SelShip.h"
#include "pan-SelSumm.h"
#include "pan-SetStati.h"
#include "pan-ShCrsSpd.h"
#include "'pan-Ship.h"
#include 'pan-Shuttle.h"
#include ~'pan-StatRes.h"
#include .'pan...Stike.h"
#include "pan-StrikeSh.h"
#include "panjinrep.h'
#include "pan-UnrepDat.h"
#include "pan...jnrepRes.h"
#include "pan-USumComm.h"
#include "pan-USumOrd.h"

FUNCTION VOID BGEvents Initialize All Panels (resfileSpec)
TEXT *resfiaeSpec;

extern Id CoFind 0
extern Id CoNew 0;
Id vmCollection '

/* read resource file *
vmCollection =Co-New (P _ABORT);
CoRead[File (vmCollection, resfileSpec. P-ABORT);

/* initialize view and target Vm objects for each panel *
AAWThret_-Initialize -Panel (vmCollection);,
AircraftInitialize Panel (vmCollection);,
AirData_-Initialize-Panel (vmCollection);
ASW Initialize Panel (vmCollection);,
ASWOrdInitializePanel (vmCollection);,
ASWThxetInitialize Panel (vmCollection):
BGCrsSpd-Initialize Panel (vmColiection);
BGEvents InitializePanel (vmCollection),
BGShipsjfnitialize - anel (vmCollection);
BGSSCom_-Initialize -Panel (vmnCollecfion):
BGSumCom_InitializePanel (vmCollection),
CloseAD_ Initialize-Panel (vmCollection);
CommeniLInit~ialize-Panel (vmCollection):,
CommListInitialize-Panel (vmCollection);
Consol initialize-Panel (vmCollection),
Consolba_-Initialize -Panel (vmCollection):
ConsotRe Initialize-Panel (vmCollection):.
DelAcft_-inritializePanel (vmCollection);
DelCommInitialize-Panel (vmCollection);
DelEventInitializePanel (vmCollection);,
DelOrd_-InitializePanel (vmCollection);.
DelShip-jnitiaiize-Panel (vmCollection),

197

Dig-jnitialize Panel (vmCollection),
EditCommInitialize Panel (vmCollection);
EventLisInitialize Panel (vmCollection);
F44FuelInitializePanel (vmCollection);
F76Fuel_InitializePanel (vmCollection);
FuelTranInicialize Panel (vmCollection):
LatLongjInitialize Panel (vmCollection);
OrdDataInitialize_-Panel (vmCollection);
OrdnanceInitialize -Panel (vmCollection);
OrdTransInitialize Panel (vmCollection);
OrdTrSeIInitialize Panel (vmCollecfion);
PrintJobinitializePanel (vmCollection);
Raid lniitilalizePanel (vmCollection):,
RaidS hip-jnitiaize-Panel (vmCollection);
SeIBG_Initialize -Panel (vmCollection);
SelOrd InitializePanel (vmCollection),
SeiShiOrInifialize-Panel (vmCollection):
SeiShipInitializePanel (vmCollection);
SelSummIntitialize-Panel (vmCollection);
SetStatiInitializePanel (vmCollection):
ShCrsSpdjlnitializej'anel (vmCollection):
Ship-Initialize-Panel (vmCollection);
Shuttle_-initializePanel (vmCollection);
StatRes Initialize Panel (vmCollect~ion);
Strike InitializePanel (vmCollection);
StrikeShInitializePanel (vmCollection);
Unrep-InitializePanel (vmCollection):
Un~repDatinitialize..yanel (vmCollection);
UnrepResInitializePanel (vmCollection);
USumCommInitialize.Panel (vmCollection);
USumOrdinitialize-Panel (vmCollection);

198

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: Imakefile *** */
/**** Generated: Jan 13 11:28:36 1993 ***
* ***

"* PURPOSE:
"* This is the Imakefile of a C application generated by the TAE Plus
"* Code Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* 1. To build your application, type "make". The Makefile generated
* by the TAE code generator invokes imake using this Imakefile to
* generate an application specific Makefile.

* 2. If you change the name of your resource file or application, you
* will need to either edit this file, or just delete it and regenerate
* the code.

* 3. Edit this file to include your application specific source files.

*/

#define GeneratedApplication

/* PROGRAMMER NOTE:"* Add a line #include "Imake.RESFILENAME"' for each resource fide in
"* your application.
*/

#include "Imake.BGEvents"

/* PROGRAMMER NOTE:"* Insert application specific build parameters. These override
"* definitions in the configuration files in STAE/config.*/

CDEBUGFLAGS =
LDDEBUGFLAGS =
APPCFLAGS =

APPLOADFLAGS =
APPLINKLIBS - -L/h/Nauticus/libs -IVids
APP DEPLIBS = $(DEPLIBS)

APPCINCLUDES = -I$(TAEINC)\
-I/h/Nauticusfinclude/vids/Vids.h\
-1/h/bglcss/scripts/gui/events/BGEventsLib.h\
-l/h/bglcss/scripts/gui/eventsibg.h

PROGRAM = BGEvents

/* PROGRAMMER NOTE:
* Add $(SRCSRESFILENAME) and $(OBJSRESFILENAME) for each resource file
* in your application.
*/

GENSRCS = $(PROGRAM).c $(SRCSBGEvents)
GENOBJS = $(PROGRAM).o $(OBJSBGEvents)

/* PROGRAMMER NOTE:
* Add your application specific srcs and object files (that are no(
* generated by the code generator) here.
*/

APPSRCS = /h/bglcss/scripts/gui/events/bg.c\

199

fi/bglcss/scripts/gui/events/BGEventsLib.c
APPOBIS =/h/bglcss/Scripts/gui/events/bg.o\

/h/glcss/scripts/gui/eventslBGEventsLib.o

/* Macro (defined in TAEmake.tinpl) to generate Makefile targets.

CApplication($(PROGRAM))

200

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** */
/* *** File: panBGCrsSpd.c *** */
/**** Generated: Jan 19 15:25:41 1993 ***
/. **~I****************
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: BGCrsSpd
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "panBGCrsSpd.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id. Target, and View are provided.
* **

,/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals *!
#include "panBGCrsSpd.h"

/* One "include" for each connected panel */
#include "panDtg.h"

/*BERN*/
#include "panSelBG.h"#include "panBGEvents.h"

/*BERN*/
extem BGEVENT* SaveBGEvents0;
extern BGEVENT* GetBGEvents0;

extem BGEVENT* MakeBGEvento;
extem BGEVENT* InsertBGEvent0;
extem int GetBG0;
extem int GetBGs0;
extern int dtgo;
extem int validdtgo;
extem BGHEADER* MakeBGHeader0;
extern BGHEADER* GetBGHeaderso;
extern BGHEADER* InsertBGHeadero;
extern BGHEADER* SaveBGHeaderso;

Id BGCrsSpdTarget, BGCrsSpdView, BGCrsSpdld:
/* BGCrsSpdDispatch is defined at the end of this file */

/, **
* Initialize the view and target of this panel.*/ !

FUNCTION VOID BGCrsSpdInitializePanel (vmCollection)
Id vmCollection;

Id CoFind 0;

BGCrsSpdView = CoFind (vmCollection, "BGCrsSpd-v");
BGCrsSpdTarget = CoFind (vmCollection, "BGCrsSpd_t"):

b}

1* •**************•**************•*****************•******•*******************

* Create the panel object and display it on the screen.
*/

FUNCTION VOID BGCrsSpdCreatePanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags:

201

if (BGCrsSpdld)
printf ("Panel (BGCrsSpd) is already displayed.\nl");

else
BGCrsSpdId = WpL-NewPanel(DefaultDisplay, BGCrsSpdTarget.
BGCrsSpdView, rellativeWindow, BGCrsSpdDispatch, flags)*,

"* Erases a panel from the screen and de-allocate the associated panel
"* object.

FUNCTION VOID BGCrsSpd-Destroy-Panel (

WptPanelErase(BGCrsSpdld):
BGCrsSpdld=0:

*Connect to this panel. Create it or change it's state.

FUNCTION VOID BGCrsSpd-Connect_Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags,

if (BGCrsSpdld)
Wpt_SetPanelState (BGCrsSpdld, flags);,

else
BGCrsSpd-CreateyPanel (relativeWindow, flags);

*Handle event from parameter: AddEvent

EVENTHANDLER AddEventEvent (value, count)
TEXT *value[]-, /* string pointers ~
FUNINT count; P' numn of values ~

/*BERN*/
BGInfo BGs[NMABGSI;
int BGIndex = 0;
int BGHeaderlndex = 0;
BGHEADER* NewHeader;,
BGHEADER* HeadHeader;
BGEVENT* NewEvent;
BGEVENT`* HeadEvent;

HeadEvent = (BGEVENT*) malloc(sizeof (struct BGEvent))

HeadEvent->DTG =0;

HeadHeader = (BGHEA.DER*) malloc(sizeof (struct BGHeader))

HeadHeader->DTG = 0;

BGlndex = GetBGs(BGs);

202

BGlndex =GetBG(StringParmn(BGEventsTarget,"BGList"). BGlndex);

HeadEvent = GetBGEvents(BGlndex);

if (HeadEvent->DTG == 0
HeadEvent =(BGEVENT*) malloc(sizeof (struct BGEvent))

NewEvent = MakeBGEvent(0, dtg(StringParm(BGCrsSpdTarget,"Dtg")),
BGCourseSpeed,Orphan,AII,Low. 100.
RealParm(BGCrsSpdTarget."Course"),
RealParm(BGCrsSpdTarget, "Speed"))-.

NewHeader--MakeBGHeader(BGCourseSpeed,
StringParrn(BGCrsSpdTarget,"Dtg"),
RealParmn(BGCrsSpdTarget,"Course"),
RealParm(BGCrsSpdTarget. -Speed")),

HeadHeader = GetBGHeaders(BG Index);

HeadHeader = InsertBGHeader(HeadHeader, NewHeader);

SaveBGHeaders(BGlndex, HeadHeader);

HeadEvent = InsertBGEvent(HeadEvent. NewEvent);

Sav..AlGEvents(BGlndex, HeadEvent);

free(HeadEvent);

free(NewEvent);

f* Begin generated code for Connection ~
BGCrsSpdDesb-oy-Panel ();
/* End generated code for Connection ~

*Handle event from parameter: Close

EVENTHANDLER Close-Event (value, count)
TEXT *value[]; f* string pointers *
FUNINT count;, /* num of values ~

/* Begin generated code for Connection *
BGCrsSpd-Destroy-Panel ();
/* End generated code for Connection *

*Handle event from parameter: Dtg

EVENTHANDLER DtgEvent (value, count)
TEXT *value[]; /* string pointers ~
FUNINT count;, /* num of values *

int Dtglnteger;,
int* pointer;

203

(int*) Dtglnteger = pointer;

Dtglnteger = dtg(StringParm(BGCrsSpdTarget. -Dtg"));

if (validdtg((StringParm(BGCrsSpdTarget, "'Dtg")), pointer) == 0)1
/* Begin generated code for Connection */
DtgConnectPanel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

1***
* Handle event from parameter: Help./
EVENTHANDLER HelpEvent (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

struct DISPATCH BGCrsSpdDispatch[] = I
I"AddEvent". AddEventEvent I.
("Close", Close-Event 1.
"I"Dtg", DtgEvent 1.
"IH"Help", Help-Event),
NULL, NULL) /* terminator entry */

204

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panBGCrsSpd.h *** */
/**** Generated: Jan 19 09:08:04 1993 ****/

* PURPOSE:
* Header file for panel: BGCrsSpd

* REGENERATED:
* The following WorkBench operations will cause regeneration of this file:
* The panel's name is changed (not title)
* For panel:
* BGCrsSpd

* CHANGE LOG:
* 19-Jan-93 Initially generated...TAE
* **

*/

#ifndef IPANBGCrsSpd /* prevent double include */
#define IPANBGCrsSpd 0

/* Vm objects and panel Id. */
extern Id BGCrsSpdTarget, BGCrsSpdView, BGCrsSpdId;

/* Dispatch table (global for calls to WptNewPanel) */
extem struct DISPATCH BGCrsSpdDispatch[];

/* Initialize BGCrsSpdTarget and BGCrsSpdView */
extem VOID BGCrsSpdInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID BGCrsSpdCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extem VOID BGCrsSpdDestroyPanel ();

/* Connect to this panel. Create it or change it's state */
extern VOID BGCrsSpdConnectPanel 0;
#endif

205

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/* File: panBGEvents.c *** */
/* Generated: Feb 8 11:33:14 1993 ***
/. **
"* PURPOSE:
"* This file encapsulates the TAE Plus panel: BGEvents
"* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "pan-BGEvents.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* For the panel items:
"* AAWThreatLevel, ASWEvent, ASWThreatLevel, BGCourseSpeed,
"* Close, CommentList, Consol, EventList.
"* FuelTransfer, Help, OrdnanceTransfe, Predict,
"* Raid, SetStation, ShipCourseSpeed, ShipList,
"* Strike, Unrep

* CHANGE LOG:
* 8-Feb-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */
#include "panBGEvents.h"

/* One "include" for each connected panel */
#include "panAAWThret.h"
#include "panASW.h"
#include "panASWThret.h"
#include "panBGCrsSpd.h"
#include "panCloseAll.h"
#include "'panCommentL.h"
#include "'panConsol.h"
#include "panEventLis.h"
#include "panFuelTran.h"
#include "panOrdTrSel.h"
#include "panSelSumm.h"
#include "pan.Raid.h"
#include 'panSetStati.h"
#include "pan-ShCrsSpd.h"
#include "pan-BGShips.h"
#include "panStrike.h"
#include "panUnrep.h"

/*BERN*/
extem int GetBGsO;
extem void ShowBGsO;

Id BGEventsTarget, BGEventsView. BGEventsld;
/* BGEventsDispatch is defined at the end of this file */

1* **

* Initialize the view and target of this panel.
*/

FUNCTION VOID BGEventsInitializePanel (vmCollection)
Id vmCollection;

206

Id CoFind 0:

BGEventsView = Co-Find (vmCollection, "BGEvents_v"):.
BGEventsTarget = Co-Find (vmCollection. -BGEvents_C'):

*Create the panel object and display it on the screen.

FUNCTION VOID BGEvents_-Create-Panel (relativeWindow. flags)
Window relative Window:
COUNT flags:.

/*BERN*/
BGlnfo BGs[MAXBGSJ:

if (BGEventsld)
printf ("Panel (BGEvents) is already displayed.n-):,

else
BGEventsld =WptNewPanel (DefaultDisplay. BGEventsTarget. BGEventsView,

relativeWindow. BGEventsDispatch, flags);
GetBGs(BGs);

ShowBGs(BGE-',entsld."BGList"):

"* Erases a panel from the screen and de-allocate the associated panel
"* object.

FUNCTION VOID BGEventsDestroyPanel0

Wpt -PanelErase(BGEventsld):
BGEventsld=-O:

*Connect to this panel. Create ic or change it's state.

FUNCTION VOID BGEvents_-Connect_Panel (relativeWindow. flags)
Wiiidow iclativeWindow:
COUNT flags.

if (BGEventsld)
Wpt-Se Pane [State (BGEventsld, flags):

else
BOEventsCreate-Panel (relativeWindow. flags):

*Handle event from parameter: AAWThreatLevel

EVENTHANDLER AAWThreatLevelEvent (value, count)
TEXT *valuef 1:. /* string pointers ~
FUNINT count: /* numn of values ~

f* Begin generated code for Connection *

207

AAWThret Connect Panel (NULL, WPTPREFERRED);
/* End generated code for Connection */

1* **

* Handle event from parameter: ASWEvent
*/

EVENTHANDLER ASWEventEvent (value, count)
TEXT *value[), /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */ -

ASWConnect_Panel (NULL. WPTPREFERRED):
/* End generated code for Connection */

* Handle event from parameter: ASWThreatLevel
*/

EVENT HANDLER ASWThreatLevel Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
ASWThretConnect Panel (NULL, WPTPREFERRED):
/* End generated code for Connection */

* Handle event from parameter: BGCourseSpeed
*/
EVENT-HANDLER BGCourseSpeedEvent (value. count)

TEXT *value[]. /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
BGCrsSpd ConnectPanel (NULL, WPTPREFERRLD):
/* End generated code for Connection */

* Handle event from parameter: Close
*/

EVENT HANDLER CloseEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; P num of values */I
/* Begin generated code for Connection */
CloseAllConnectPanel (NULL. WPTPREFERRED):
/* End generated code for Connection */

* Handle event from parameter: CommentList

EVENT HANDLER CommentListLEvent (value, count)

208

TEXT *value[], /* string pointers */
FUNINT count; /* num of values */

f* Begin generated code for Connection */
CommentLConnectPanel (NULL, WPT PREFERRED);
/* End generated code for Connection */

I ***********•**

* Handle event from parameter: Consol
*/

EVENTHANDLER ConsolEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
Consol_ConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

, ,************,*****,****** ***

* Handle event from parameter: EventList
*/
EVENT HANDLER EventListEvent (value, count)

TEXT *value[); /* string pointers */
FUNINT count; /* ntm of values */f
/* Begin generated code for Connection */
EventLis_Connect_Panel (NULL. WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: FuelTransfer
*/
EVENTHANDLER FuelTransfer_ Event (value, count)

TEXT *value[]; /* string pointers */
FUNINT count: /* num of values */

/* Begin generated code for Connection */
FuelTranConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Help
*/
EVENT HANDLER Help-Event (value, count)

TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
I
/* Begin generated code for Connection */
EventLisConnectPanel (NULL. WPTPREFERRED):
/* End generated code for Connection */

209

* Handle event from parameter: OrdnanceTransfe
*/

EVENT HANDLER OrdnanceTransfeEvent (value, count)
TEXT *value[]; /t string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
OrdTrSelConnect Panel (NULL, WPTPREFERRED):
/t End generated code for Connection */

"* Handle event from parameter: Predict*/

EVENTHANDLER PredictEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count, /* num of values */

/* Begin generated code for Connection */
SelSummConnectPanel (NULL, WPT PREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Raid
./

EVENTHANDLER RaidEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
RaidConnectPanel (NULL, WPT_PREFERRED);
/* End generated code for Connection */

* Handle event from parameter: SetStation
*/

EVENT HANDLER SetStation Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
SetStatiConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: ShipCourseSpeed
*/
EVENTHANDLER ShipCourseSpeed Event (value, count)

TEXT *value[); /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
ShCrsSpdConnectPanel (NULL, WPTPREFERRED);

210

/* End generated code for Connection */

* Handle event from parameter: ShipList
*/

EVENTHANDLER ShipListEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin generated code for Connection */
BGShipsConnectPanel (NULL. WPTPREFERRED);
/* End generated code for Connection */

* Handle event from parameter: Strike
*/

EVENTHANDLER StrikeEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */f
/* Begin generated code for Connection */
StrikeConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection *1

* Handle event from parameter: Unrep
*/

EVENTHANDLER UnrepEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

/* Begin generated code for Connection */
UnrepConnectPanel (NULL, WPTPREFERRED);
/* End generated code for Connection */
I

struct DISPATCH BGEventsDispatch[i = I
I"AAWThreatLevel", AAWThreatLevelEvent }
("ASWEvent", ASWEventEventi,
"f'"ASWThreatLevel", ASWThreatLevelEvent),
("BGCourseSpeed", BGCourseSpeedEvent },
"("Close", Close Event),
"I"CommentList", CommentListEvent 1.
("Consol", Consol Event),
("EventList", EventList Event },
1 "FuelTransfer", FuelTransferEvent).
"J"Help", HelpEvent),
"OrdnanceTransfe", OrdnanceTransfe_Event).
"Predict", Predict Event).

J "Raid", RaidEvent 1,
I "SetStation", SetStationEvent),
"f"ShipCourseSpeed". ShipCourseSpeedEvent),
"I"ShipList". ShipList_Event),

211

("Strike", Strike-Event,
"I"Unrep", UnrepEvent 1,
(NULL. NULLj /* terninator entry */

2;

212

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: panBGEvents.h *** */
/* ***Generated: Jan 19 09:08:04 1993 *** */

"* PURPOSE:
"* Header file for panel: BGEvents

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* BGEvents

"* CHANGE LOG:
"* 19-Jan-93 Initially generated...TAE

*/

#ifndef IPANBGEvents /* prevent double include */
#define I_PANBGEvents 0

/* Vm objects and panel Id. */
extern Id BGEventsTarget, BGEventsView, BGEventsld;

/* Dispatch table (global for calls to WptNewPanel) */
extem struct DISPATCH BGEventsDispatch[];

/* Initialize BGEventsTarget and BGEventsView */
extem VOID BGEventsInitializePanel 0;

/* Create this panel and display it on the screen */
extern VOID BGEventsCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID BGEventsjDestroy_Panel 0;

/* Connect to this panel. Create it or change it's state */
extem VOID BGEventsConnectPanel 0;
#endif

213

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***
/**** File: Overview.c *** */
/**** Generated: Jan 13 13:52:27 1993 ***
**

"* PURPOSE:
"* This the main program of an application generated by the TAE Plus Code
"* Generator.

* REGENERATED:
* This file is generated only once.

* NOTES:
* To turn this into a real application, do the following:

* 1. Each panel that has event generating parameters is encapsulated by
* a separate file, named by concatenating the string "pan-" with the
* panel name (followed by a ".c"). Each parameter that you have defined
* to be "event-generating", has an event handler procedure in the
* appropriate panel file. Each handler has a name that is a
* concatentation of the parameter name and the string "Event". Add
* application-dependent logic to each event handler. (As generated by
* the WorkBench, each event handler simply logs the occurrence of the
* event.)

* 2. To build the program, type "make". If the symbols TAEINC.
* are not defined, the TAE shell (source) scripts $TAE/bin/csh/taesetup
* will define them.

* ADDITIONAL NOTES:
* 1. Each event handler has two arguments: (a) the value vector
* associated with the parameter and (b) the number of components. Note
* that for scalar values, we pass the value as if it were a vector with
* count 1.

* Though it's unlikely that you are interested in the value of a button
* event parameter, the values are always passed to the event handler for
* consistency.

* 2. You gain access to non-event parameters by calling the Vm package
* using the targetld Vm objects that are created in
* InitializeAllPanels. There are macros defined in global.h to assist
* in accessing values in Vm objects.

* To access panel Id, target, and view, of other panels, add an
"* "#include" statement for each appropriate panel header file.

* CHANGE LOG:
* 13-Jan-93 Initially generated...TAE
* **

#include "taeconf.inp"
#include "wptinc.inp"
#include "symtab.inc"
#include "global.h" /* Application globals */

Display *DefaultDisplay;
BOOL Application-Done = FALSE;

main (argc, argv)

214

FUNINT argc;
TEXT *argv[];

I
WptEvent wptEvent; /* event data */
CODE eventType;

COUNT termLines, termCols;
CODE termType, ret;/*BERN*/

/* PROGRAMMER NOTE:
* add similar extern's for each resource file in this application
*/

extern VOID OverviewInitializeAll Panels (;
extern VOID OverviewCreate InitialPanels 0:

struct DISPATCH *dp; /* working dispatch pointer */
IMPORT struct VARIABLE *VmFind0;
struct VARIABLE *parmv; /* pointer to event VARIABLE */

/* initialize terminal without clearing screen */
Ipinit (&termLines, &termCols, &termType);

/* permit upper/lowercase file names */

f forcelower (FALSE);

DefaultDisplay = WptInit (NULL);

/* initialize resource file */
/* PROGRAMMER NOTE:
"* For each resource file in this application, calls to the appropriate
"* InitializeAllPanels and Create_InitialPanels must be added.
*/

OverviewInitialize All Panels ("Overview.res");
OverviewCreateInitialPanels 0;

/* main event loop */
/* PROGRAMMER NOTE:
"* use SETAPPLICATIONDONE in "quit" event handier to exit loop.
"* (SETAPPLICATIONDONE is defined in global.h)*/

ret = WprSetHelpStyle("wpthelp.res");
while (!ApplicationDone)

eventType = WpLNextEvent (&wptEvent); /* get next WPT event */

switch (eventType)

case WPTPARMEVENT:

/* Event has occurred from a Panel Parm. Lookup the event"* in the dispatch table and call the associated event
"* handler function.
./

dp = (struct DISPATCH *) wptEvent.puserContext;
for (; (*dp).parmName != NULL; dp++)

if (sequal ((*dp).parmName, wptEvent.parmName))I
parmv = VmFind (wptEvent.p dataVm, wptEvent.parmName);

215

(*(*dp).eventjunction)
((*parmv).veck, (*parmnv).v_couft);

break:

break,

case WPT_FILEEVENT:

/* PROGRAMMER NOTE:"* Add code here to handle file events.
"* Use WptAddEvent and WptRemoveEvent to register and remove
* event sources.
*/

printf ("No EVENTHANDLER for event from external source.\M");
break;

case WPT_WINDOW_EVENT:

/* PROGRAMMER NOTE:"* Add code here to handle window events.
"* WPT_W WNDOWEVENT can be caused by windows which you directly
"* create with X (not TAE panels), or by user acknowledgement
"* of a WptPanelMessage (therefore no default print statement
"* is generated here).
*/

break;

case WPTTIMEOUTEVENT:

/* PROGRAMMER NOTE:
"* Add code here to handle timeout events.
"* Use WptSetTimeOut to register timeout events.
*/

printf ("No EVENTHANDLER for timeout event.\n");
break;

default:

printf("Unknown WPT Eventin");
break;

/* end main event loop */

Wpt.Finisho;/* close down all display connections */

/* PROGRAMMER NOTE:"* Application has ended normally. Add application specific code to
"* close down your application
*/

/* end main

216

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * */
/**** File: Overviewcreatinit.c *** */
/**** Generated: Jan 13 13:52:27 1993 *** *11* **************** ************************* *******************************

"* PURPOSE:
"* Displays all panels in the initial panel set of this resource file

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is added to the initial panel set
"* A panel is deleted from the initial panel set
"* For the set of initial panels:
"* Overview

* CHANGE LOG:
* 13-Jan-93 Initially generated...TAE
* ***************************************~*********************************

*/
#include "taeconf.inp"
#include "wptinc.inp"
#include "global.h" /* Application globals */

/* One include for each panel in initial panel set */
#include "panOverview.h"

FUNCTION VOID OverviewCreateInitialPanels (

/* Show panels */

OverviewCreatePanel (NULL, WPT_PREFERRED);

217

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ****/
/**** File: Overview init .pan.c *** */
/**** Generated: Jan 13 13:52:27 1993 ***
/,***

"* PURPOSE:
"* Initialize all panels in the resource file.

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* A panel is deleted
"* A new panel is added
"* A panel's name is changed (not title)
"* For the panels:
"* Overview

* CHANGE LOG:
* 13-Jan-93 Initially generated...TAE
* **

*/

#include "taeconf.inp"
#include "wptinc.inp"
#include "symtab.inc"
#include "global.h" /* Application globals */

/* One "include" for each panel in resource file */
#include "panOverview.h"

FUNCTION VOID OverviewInitializeAllPanels (resfileSpec)
TEXT *resfileSpec;f
extern !d CoFind 0:
extern Id Co New 0;
Id vmCoflection ;

/* read resource file */
vmCollection = Co New (PABORT);
CoReadFile (vmCollection, resfileSpec, PABORT);

/* initialize view and target Vm objects for each panel */
OverviewInitialize Panel (vmCollection);

21

218

/* * TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ***

/*** File: pan Overview.c *** */
/** Generated: Jan 14 08:16:26 1993 ***
**

"* PURPOSE:
"* This file encapsulates the TAE Plus panel: Overview
* These routines enable panel initialization, creation, and destruction.
"* Access to these routines from other files is enabled by inserting
"* '#include "panOverview.h"'. For more advanced manipulation of the panel
"* using the TAE routines, the panel's Id, Target, and View are provided.

"* NOTES:
"* For each parameter that you have defined to be "event-generating" in
"* this panel, there is an event handler procedure below. Each handler
"* has a name that is a concatenation of the parameter name and -_Event".
"* Add application-dependent logic to each event handler. (As generated
"* by the WorkBench, each event handler simply logs the occurrence of the
* event.)

* You may want to flag any changes you make to this file so that if you
* regenerate this file, you can more easily cut and paste your
* modifications back in. For example:

* generated code ...
* /* (+) ADDED yourinitials * /
* your code
* I*(-) ADDED*/

more generated code ...

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* Overview

* The following WorkBench operations will also cause regeneration:
* An item is deleted
* A new item is added to this panel
* An item's name is changed (not title)
* An item's data type is changed
* An item's generates events flag is changed
* An item's valids changed (if item is type string and connected)
* An item's connection information is changed
* For the panel items:
* BackUp, Close, Events, Forward,
* Help, Index, SetUp
,

* CHANGE LOG:
* 14-Jan-93 Initially generated...TAE
* **

*/

#include "'taeconf.inp"
#include "wptinc.inp"
#include "'global.h" /* Application globals *1
#include "pan Overview.h"

/* One "include" for each connected panel */

Id OverviewTarget, OverviewView, Overviewld;

219

/* OverviewDispatch is defined at the end of this file */

1* ******************************.************ *************************

* Initialize the view and target of this panel.
*1

FUNCTION VOID OverviewInitializePanel (vmCollection)
Id vmCollection;I
Id CoFind 0;

OverviewView = CoFind (vmCollection, "Overviewv");
OverviewTarget = CoFind (vmCollection, "Overview_t");

* **•**

* Create the panel object and display it on the screen.
*/

FUNCTION VOID OverviewCreate-Panel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;f
if (Overviewld)

printf ("Panel (Overview) is already displayed.\n");
else

Overviewld = Wpt_NewPanel (Default-Display, OverviewTarget, OverviewView,
relativeWindow, OverviewDispatch, flags);

1. ***************: *****.:*********,l*********************.*****************.***

"* Erases a panel from the screen and de-allocate the associated panel
"* object.

FUNCTION VOID Overview_Destroy_Panel 01
Wpt_PanelErase(Overviewld);
Overviewld=0;

* Connect to this panel. Create it or change it's state.
./

FUNCTION VOID OverviewConnectPanel (relativeWindow, flags)
Window relativeWindow;
COUNT flags;

if (Overviewld)
WptSetPanelState (Overviewld, flags);

else
OverviewCreate Panel (relativeWindow, flags);

* Handle event from parameter: BackUp
*/

EVENTHANDLER BackUpEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */

220

/* Begin default generated code */

printf ("Panel Overview, parm BackUp: value = %s\n",

count>O ? value[0] : "none");

/* End default generated code */

* Handle event from parameter: Close
*/

EVENTHANDLER Close Event (value, count)
TAEINT valuef]; /* integer vector */
FUNINT count; /* num of values */I
/* Begin default generated code */

prinff ("Panel Overview, parm Close: value =%d"
count>O ? value[0] : 0);

/* End default generated code */

/* Begin generated code for Connection */

OverviewDestroyPanel 0;
SETAPPLICATIONDONE;

/* End generated code for Connection */

* Handle event from parameter: Events
*./

EVENTHANDLER Events-Event (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* hum of values */I
/* Begin default generated code */

printf ("Panel Overview, parm Events: value = %s\n".
count>0 ? value[0] : "none");

/* End default generated code */

* Handle event from parameter: Forward
*./

EVENTHANDLER ForwardEvent (value, count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */I
/* Begin default generated code */

printf ("Panel Overview, parm Forward: value = %s\n".
count>O ? valuelO] : "none"):

221

/* End default generated code */

* Handle event from parameter: Help
*1 ,

EVENTHANDLER Help-Event (value. count)
TEXT *value[]; /* string pointers */
FUNINT count; /* num of values */
I
/7 Begin default generated code */

printf ("Panel Overview, parm Help: value = %sn",
count>O ? value[01 : "none");

/* End default generated code */

* Handle event from parameter: Index
*/

EVENTHANDLER IndexEvent (value, count)
TEXT *value[]; 7. string pointers */
FUNINT count; /* num of values */

/* Begin default generated code */

printf ("Panel Overview, parm Index: value = %s~n",
count>O ? value[0] : "none");

/* End default generated code */

* Handle event from parameter: SetUp
*/

EVENT HANDLER SetUpEvent (value. count)
TEXTf *value[J; /* string pointers */
FUNINT count; /* num of values */
I
/* Begin default generated code */

printf ("Panel Overview, parm SetUp: value = %sln",
count>0? value[01 : "none");

/* End default generated code */

struct DISPATCH OverviewDispatch[] = j
I"BackUp", BackUpEvent },
("Close", Close_Event).
("Events", EventsEvent).
I "Forward", ForwardEvent I.
I"Help", Help-Event},
("Index", IndexEvent)
I"SetUp". SetUpEvent).

222

JNULL. NULL) /* tenminator entry *

223

/**** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 * */
/**** File: panOverview.h *** */
/**** Generated: Jan 13 13:52:27 1993 ***

"* PURPOSE:
"* Header file for panel: Overview

* REGENERATED:
"* The following WorkBench operations will cause regeneration of this file:
"* The panel's name is changed (not title)
"* For panel:
"* Overview

* CHANGE LOG:
* 13-Jan-93 Initially generated...TAE

*/

#ifndef I_PANOverview /* prevent double include */
#define I_PAN_Overview 0

/* Vm objects and panel Id. */
extern Id OverviewTarget, OverviewView, Overviewld,

/* Dispatch table (global for calls to WptNewPanel) */
extern struct DISPATCH OverviewDispatch[];

/* Initialize OverviewTarget and OverviewView */
extern VOID OverviewInitialize-Panel 0;

/* Create this panel and display it on the screen */
extern VOID OverviewCreatePanel 0;

/* Destroy this panel and erase it from the screen */
extern VOID OverviewDestroyPanel 0:

/* Connect to this panel. Create it or change it's state */
extern VOID OverviewConnectPanel 0;
#endif

224

APPENDIX C. BGLCSS 2.0 C++ PROGRAM LISTING

C++ files generated by TAE Plus contained is this appendix:

BGSetup.cc
BGSetup.h
BGSetup-creat -init.cc
BGSeupjnilt-panxcc
Imakefile
item....SetUpBGs.h
pan - etUpBGs.cc
pan-SetUpBGs.h

225

// •** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 "'

// "' File: BGSetup.cc ***
// *** Generated: Mar 10 07:51:07 1993 *
I//I///7/I/II/// //I/ //// / //IIIIIIIII/IIIIIII/IIIIIIIIIIIIIIIIIIIIIIIII/
II PURPOSE:
// This the main program of an application generated by the TAE Plus
II Code
// Generator.
1/ S
II REGENERATED:
II This file is generated only once.
/1
1/ NOTES:
II To turn this into a real application, do the following:1/
// 1. Each panel that has event generating parameters has a class ,
/1 definition file, named by concatenating the string "pan_- with the
I/ panel name followed by a I.h'. The methods are in a separate file,
// named by concatenating the string "pan_, with the panel name
/1 followed by a '.cc'. Each item has a class definition in a file
I/ named by concatenating the string 'item_, with the panel name
1/ followed by a 1.h'. Each parameter that you have defined to be

'/ 'event-generating', has an event handler method in the appropriate
// panel file. Add application-dependent logic to each event handler.
1/ (As generated by the WorkBench, each event handler simply logs the
// occurrence of the event.)
/1
// 2. To build the program, type 'make'. If the symbols TAEINC.
1/ are not defined, the TAE shell (source) scripts $TAE/bin/csh///
/1 taesetup
// will define them.
/I
II ADDITIONAL NOTES:

1/ 1. Each event handler has one argument: the actual wptevent
II
I/ 2. You gain access to non-event parameters by calling the TaeVar
II and TaeVarTable methods using the instances of TaeVar and
// TaeVarTable associated with the panel./1
// To access other panels, add an '#include' statement for each
// appropriate panel header file.
1/
II CHANGE LOG:
// 10-Mar-93 Initially generated.. .TAE

#include <stream.h>
#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>
1/
// PROGRAMMER NOTE:
// For each resource file in this application, add the appropriate
1/ header file
/i
#include 'BGSetjp.h'

Display * defaultDisplay;
TaeEventHandler *eventHandler;

main))

COUNT tlines, tcols;
CODE ttype;
f_forcelower (FALSE); /1 permit upper/lowercase file names
t_.pinit (&tlines, &tcols, &ttype); / initialize terminal pkg

defaultDisplay = WptCCInit (NULL

II
// PROGRAMMER NOTE:
II For each resource file in this application, add calls to the
// appropriate constructors/1
BGSetupResource *BGSetupR = new BGSetupResourceo);

226

eventHandier = new TaeEventHandlerU;

1/PROGRAMMER NOTE:
iiFor each resource file in this application, calls to the
7/appropriate Initialize..All_Panels and Create..jnitialPanels
/1method must be added.

/1Initialize all panel instances

BGSetupR->InitializeAll_Panels ()

// Create and display the initial panel set

BGSetupR->CreateInitialPanels(*eventHandler

eventHanidler->ProcessEventso; 1/Start event processing

WptFinishfl; IIClose all display connections

227

// •" TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 "'
// *• File: BGSetup.h ***
/1 *" Generated: Mar 10 07:51:07 1993 **

// PURPOSE:
/1 This header file encapsulates the TaeResource that corresponds with
1/ the resource file /h/bglcss/scripts/gui/setup/c+-`/BGSerup.res.res.
/1
// REGENERATED:
I/ This file is generated only once.
//
I/ CHANGE LOG:
/1 10-Mar-93 Initially generated... TAE

#ifndef ISIMPLE // prevent double include
#define ISIMPLEO

#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>
1/
// BGSetupResource contains methods that have implication on the
II resource file BGSetup.res.
I/
class BGSetupResource : public TaeResource

public:

BGSetupResource (({/h/bglcss/scripts/gui/setup/c-+/BGSet'upp.res') {1;
-BGSetupResource () 1;

void InitializeAllPanels ()
void CreateInitial-Panels C const TaeEventHandler& C;1;

#endif

228

/ •'* TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992
/1 * File: BGSetup-creatinit.cc
1/ *** Generated: Mar 10 07:51:07 1993 **

1/ PURPOSE:
/1 Displays all panels in the initial panel set of this resource file
//
1/ REPENERATED:

The follow.ýn, WorkBench oparazr,- will - .use r n i cf ahic:
// file:
// A panel is added to the initial panel set
I/ A panel is deleted from the initial panel set
/1 For the set of initial panels:
// SetUpBGs
//
1/ CHANGE LOG:
1/ 10-Mar-93 Initially generated.. TAE

#include <stream.h>
#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>
#include 'BGSetup.h-

// One linclude" for each panel in the initial panel set
#include "panSetUpBGs.h"

void BGSetupResource::Create_InitialPanels (consC TaeEvencHandler& eh)

SetUpBGsP->Show(eh);

229

TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ~
II File: BGSetup~init~pan.co '

//**Generated: Mar 10 07:51:07 1993

IIPURPOSE:
IfInitialize all panels in the resource file.

IIREGENERATED:
IIThe fcllowing WorkBench operations will- cause regeneration. of this
1/file:

II A panel is deleted
,/ A new panel is added
II A panel's name is changed (not title)

IIFor the panels:
ii Acfttoad, AirData, BGData, BoShips, CloseAll, DelBG,
II DeleteSh, DelShip, Dtg, F44Fuel, F76Fuel, LackData,
// NewBG, OrdData,
/1 OrdLoad, OrdSel, PrintJob, SaveNewB, SeIBG, SetUpBGs, Ship,

IICHANGE LOG:
//10-Mar-93 Initially generated... .TAE

#include <stream.h>
#include <taepanel .h>
#include <taeitern.h>
#include <taevrn.h>
#$include IBGSetup.h'
// one "include" for each panel in resource file
#$include 'pan-AcftLoad.hl
include "panAirData .hl
#$include 'pan..BGData .h'
#$include 'pan-BGShips .h'
#$include 'pan..CloseAll .hw
#$include 'pan..DelBG .h'
#include 'pan-DeleteSh.hl
#include 'pan-DelShip.h'
include 'pan-otg .h
#$include "panF44Fuel .h'
#$include 'pan..y76Fuel .hw
#$include 'panLackData .hl
include 'panNewBG .h'
#$include "panOrdData .h'
#$include 'panOrdLoad.h"
#$include 'pan-OrdSel .h'
include 'pan-PrintJob.hl
#$include "nanSaveNewB.hl
#$include 'panSelBG.hl
#$include 'pan..SetUpBGs .hl
include 'pan-Ship .h
void BGSetupResource::InitializeAll_Panels (

IICreate an instance of all panels
ACftLoadP =new ACftLoadC (Colleccion)));
AirDataP= new AirDataC (Collection)));
BGDataP =new BG~ataC (CollectionW);
BGShipsP =new BGShipsC (Collection)));
CloseAllP =new CloseAllC (Collection)));
DelBGP = new DelBGC (Collection)));
DeleteShP =new DeleteShC (Collection)));
DelShipP =new DelShipC (Collection)));
DtgP = new DtgC (Collection)));
F44FuelP = new F44FuelC (Collection)));
F76FuelP = new F76FuelC (Collection)));
Lack~ataP =new Lack~ataC (Collection)));
NewBGP =new NewBGC (Collection)));
OrdDataP = new OrdoataC (Collection)));
OrdLoadP = new OrdLoadC (Collectiono);)(
OrdSelP = new OrdSelC (Collection));
PrintJobP = new PrintJobC (Collection)));
SaveNewBP = new SaveNewBC (Collection)));
Se1BGP = new SelBGC (Collection)));
SetUpBGsP = new SetUpBGsC (Collection)));
ShipP =new ShipC (Collection)));

230

/ ** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 *** "I
/* File: Imakefile *** */
/*** Generated: Mar 10 07:51:07 1993 **/
/* t***t***********t****S**********

" PURPOSE:
"* This is the Imakefile of a C++ application generated by the TAE Plus
"* Code Generator.

* REGENERATED:

This file is geneiatea onij once.

* NOTES:
* 1. To build your application, type 'make". The Makefile generated
" by the TAE code generator invokes imake using this Imakefile to
* generate an application specific Makefile.

* 2. If you change the name of your resource file or application, you
"* will need to either edit this file, or just delete it and regenerate
"* the code.

* 3. Edit this file to include your application specific source
* files.

* /

#define GeneratedApplication

/* PROGRAMMER NOTE:"* Add a line '#include 'Imake.RESFILENAMYE'' for each resource file in
"* your application.*/

#include "Imake.BGSetup"

/* PROGRAMMER NOTE:
" Insert application specific build parameters. These override
" definitions in the configuration files in $TAE/config.
-/

C++DEBUGFLAGS =LD++DEBUJGFLAGS =

APP_C++FLAGS =
APPLOADFLAGS =

APPLINKLIBS =-L/h/bglcss/CC2.1/SC1.0/libC.a
APPDEPLIBS = $(DEPLIBS)

APPC++INCLUDES = -I$(TAEINC)\
-I$(TAEINCXM)\
-I/h/bglcss/CC2-./SCl .0/include/CC

PROGRAM = BGSetup

"I' PROGRAMMER NOTE:
* Add S(SRCSRESFILENAME) and $(OBJSRESFILENAME) for each resource file
* in your application.

GETNSRCS = $(PROGRAM).cc S(SRCS-BGSetup)
GENCBJS = $(PROGRAM).o $(OBJSBGSetup)

/* PROGRAMMER NOTE:
"* Add your application specific srcs and object files (that are not"* generated by the code generator) here.
'/

APPSRCS
ApýPOBJS =

I* Macro (defined in TAEmake.tmpl) to generate Makefile targets.
*/

CPlusPlusApplication($(PROGRAM))

231

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 '

// File: itemSetUpBGs.h ***
// *" Generated: Mar 10 07:51:07 1993 '•

II PURPOSE:
/1 This file contains class definitions and instance declarations of
II all items in the TAE Plus panel:
// SetUpBGs

Ido// E Z•RATED:
/1 The following WorkBench operations will cause regeneration of this
I/ file:
II The panel's name is changed (not title)
II For panel:
II SetUpBGs
/1 I.
// The following WorkBench- operations will also cause regeneration:
/1 An item is deleted
// A new item is added to this panel
// An item's name is changed (not ti.ie)
II An item's generates events flag is changed
// For the panel items:
// Close, Delete, Edit, Heip,
II New/-
// CHANGE LOG:
// 10-Mar-93 Initially generated... TAE

#ifndef IITEMSetUpBGs /1 prevent double include
#define IITEMSetUPBGs 0

#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>

//
/1 Class definitions for the items on this panel
/1

/* /***t*****t**********
class SetUpBGsCloseC : public TaeItem

void React (WptEvent* event); 1/ item's event handler
public:

SetUpBGsCloseC (TaePanel * a) : (a, "Close') f};
1;

class SetUpBGsDe2.eteC : public TaeItem

void React (WptEvent* event); 1/ item's event handler
public:

SetUpBGsDeleteC (TaePanel * a) : (a, 'Delete') {;
1;

class SetUpBGsEditC : public TaeItem

void React (WptEvent* event); 1/ item's event handler
public:

SetUpBGsEditC (TaePanel * a) : (a, "Edit' {);

class SetUpBGsHelpC : public TaeItem

void React (WptEvent* event); II item's event handler
public:

SetUpBGs-HelpC (TaePanel * a) : (a, 'Help') (};

/***************t**
class SetUpBGsNewC : public Taeltem

void React (WptEvent* event); I/ item's event handler
public:

232

SetUpBGs-NewC CTaePanei a) :(a, 'New')(}

IIItem instances

extern SetUpBGs-JloseC *SetUpBGs-CloseI;
extern SetUpBGs-DeleteC *SetUpBGsDeleteI;
extern SetE~pBGs-EditC *SetUpE~s-EditI;
extern SetUpBGsHelpC *SetUpBGsHelpI;
externi SetUpBGs.NewC *SetUpBGs-NewI;

#endif

233

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 "*

// * File: pan-SetUpBGs.cc **
// ** Generated: Mar 10 07:51:07 1993 **

II PURPOSE:
I/ This file encapsulates the TAE Plus panel: SetUpBGs
// SetUpBGsP is an instance of the class SetUpBGsC which is a derived
// class of the TaePanel class. Access to public methods and the
// SetUpBGsP instance from other files is enabled by inserting
// '#include ;panSetUpBGs.h-'.
//
// NOTES:
// For each parameter that you have defined to be event-generating"
1/ in this panel, there is an event handler method defined below.
// Each handler is a method called React in the corresponding item
/ class.
// Add application-dependent logic to each event handler. (As
/1 generated
// by the WorkBench, each event handler simply logs the occurrence of
// the
II event.)
//
// You may want to flag any changes you make to this file so that if
// you
// regenerate this file, you can more easily cut and paste your
II modifications back in. For example:
//

// generated code ...
/1 // (+) ADDED yourinitials
/1 your code
// // (-) ADDED
1/ more generated code ...II
I-
Il
// REGENERATED:
II The following WorkBench operations will cause regeneration of this
II file:
// The panel's name is changed (not title)
// For panel:
1/ SetUpBGs
II
I/ The following WorkBench operations will also cause regeneration:
// An item is deleted
/ A new item is added to this panel
// An item's name is changed (not title)
/1 An item's data type is changed
// An item's generates events flag is changed
// An item's valids changed (if item is type string and c-nnected)
// An item's connection information is changed
// For the panel items:
II Close, Delete, Edit, Help,
II New
/ /
// CHANGE LOG:
// 1C-Mar-93 initially generated.. .TAE

#include <stream..h>
#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>
#include 'pan Set-pBGs.h // Panel class declaration
4include "item_SetUpBGs.h" /7 Item class declarations

// One 'include, for each connected panel
#include "pan-CloseAll.h"
#include "panDelBG.h,
#include 'panBGData.hl
#include "panNewBG.hl

II
// Panel Instance
//
SetUpBGsC *SetUpBGsP;

234

IIItem Instances

SetUpBcs-CloseC *SetupBGsCiosel;
SetUpBGsDeleteC *SetUPBGs-Deletel;
SetUpBGs -EdjtC *SetUpBGsEditI;
SetUpSGs-HelpC 'SetUpBGs-HelpI;
SetUpBGs.NewC *SetUpBGs.NewI;

//Panel class constructor

SetUpBGSC::SetUpBGSC (TaeCollection *collect) :(,SetUpBGs', collect)

7/create an instance of each item in the panel.

SetUpBGs-CloseI =new SetUpBGsCloseC (this);
SetUpBGs_Delet-el =new SetUpBGs-DeieteC (this);
SetUpBGS-EdiCl =new SetUpBGs-EditC (this);
Set-UpBGs-HelpI = new SetUpBGsHelpC (this);
SetUpBGSNewI = new SetUpBGsNewC ýthis);

IIPanel class destructor

SetUpBGsC::-SetUpBGsC (

delete SetUpBGs-CloseI;
delete SetUpBGs-Deletel;
delete SetUpBGs..Editl;
delete Sett~pBGsHelpI;
delete SetUpB~sNewI;

IIHandle event from parameter: Close

void SetUpBGsCloseC::React (WptEvent *event)

/1get the target variable from the event
TaeVar *itemVariable = GetTargetVar((WptEvent *)event

cout << 'Panel <<« Parento(->Name()
<< parm <<« itemVariable->Name()
<< value = -
<< itemvariable->Countfl>O ? itemVariable->String(A :none,

<< '\n';
cout. flush ()

// Begin generated code for connection

closeAllP->Show(t Parento()->Handler (H;

/1End generated code for Connection

IIHandle event from parameter: Delete

void SetL~pBGs..DeleteC::React (WptEvent *event)

1/get the target variable from the event
TaeVar *itemVariable = GetTargetVar((WptEvenc *)event)

cout << 'Panel <<« Parento(->Name()
<< 1, parm '<< itemVariable->Name('

< : value I
<< (itemVariable->CountO>O ? itemVariable->String(,? 'none'
<<'n'

235

cout. flush;

// Begin generated code for Connection

DeIBGP->Show 'Parent))->Handlero))

KEnd generated code for connect'-on

IIHandle event from parameter: Edit

void SetUoBGsEditC::React (WptEvent *event)

// get the target variable from the even:
TaeVar 'itemVari4able = GetTargetVarý (WptEvent ':event

cout << 'Panel << Parent))->Nameo.
<< parm << itemVariable->Namne(
<< value =
<< itemVariable->Count))>D ? itemllariable->String() : none^

<< I\n';
cout-flush))

// Begin generated code for Connection

BGDataP->Show "-i;-nt)->H.andlero) ;
T''CL: quit 'I

/1End generated code for Connect icn

/1Handle event from parameter: Hielp

void SetUpR~s-HelpC::React (WptEvent 'even:)

1/get the target variabl- from the event
Tael~ar 'i"temVariable =Getl'argetVar) (WptEvent, 'event

cout << 'Panel << Parent))->Name))
<< parm << itemvariabie->Name(;
<< value=I
<< itemVariable->CountO>O ? itemvariable->Stringu " none'

<< '\nl;
cout.flushC;

/1Handle event from parameter: New

void SetUpBGsNewC::React (WptEvent 'event)

(Iget the target variable from the event
TaeVar *itemVariable =GetTargetVar((WptEvent ')event

cost << "Panel '<< Parento->Name,')
<< parm <<« itemVariable->NameH
<< value='

itenVariable->CountO>D - itemr~ariable->String(H 'none'

co=t flush));

// Begin generated code for Connection

NewBGP->Showý 'Parent))->Handler))
I' TCL: quit: *I

//End generated code for Connecz~ion

236

// *** TAE Plus Code Generator version Tue May 26 14:13:27 EDT 1992 ''
I/ * File: panSetUpBGs.h **
// *' Generated: Mar 10 07:51:07 1993 *

// PURPOSE:
1/ Header file for panel: SetUpBGs
//
//
// For panel:
/1 SetUpBGs
/ /
// CHANGE LOG:
1/ 10-Mar-93 Initially generated.. .TAE

^A #ifndef 1_PANSetUpBGs // prevent double include
#define IPANSetUpBGs 0

#include <taepanel.h>
#include <taeitem.h>
#include <taevm.h>

/1
// Class definition for the SetUpBGsC class which is a derived class
1/ of TaePanel class.
/ /

class SetUpBGsC : public TaePanel

public:
SetUpBGsC MTaeCollection *collect);
-SetUpBGsC ()

//
// The instance of SetUpBGsC class
1/
extern SetUpBGsC *SetUpBGsP;

#endif

237

REFERENCES

[CARGILL 921 Cargill, T., "Using Multiple Inheritance in C++", Supplement to Dr.
Dobb's Journal, pp. 48-51, December 1992.

46
[COPLIEN 92] Coplien, J. 0., Advanced C++: Programming Styles and Idioms,

Addison-Wesley Publishing Company, 1992.

[FERNANDES 92]Fernandes, K., User Interface Specifications for Navy Command and
Control Systems Version 1.1, Naval Command, Control, and Ocean
Surveillance Center, Research, Development, Test, and Evaluation Division,
San Diego, California, June 1992.

[HAMMONDS 911 Hammonds, K., "Software Made Simple: Will Object-Oriented
Programming Transform the Computer Industry?", Business Week, pp. 92-
100, 30 September, 1991.

[HOLUB 92] Holub, A. I., C+ C++: Programming with Objects in C and C++, McGraw-
Hill, Inc., 1992.

[INRI 91 a] Inter-National Research Institute, Government Off-The-Shelf (GOTS) 1.1
Style Guide, 1991.

[INRI 91b] Inter-National Research Institute, Government Off-The-Shelf (GOTS)I.1
Software Architecture, 1991.

[INRI 92a] Inter-National Research Institute, TDBM Service, Application
Programmer's Interface, Unified Build 2.0, April 1992.

[INRI 9211 Inter-National Research Institute, Unified Build Application/TDA Toolkit:
Application Programmer's Interface, Unified Build 2.0, April 1992.

[INRI 92c] Inter-National Research Institute, JOTS II 2.0 User's Guide Draft, July
1992.

[INRI 92d] Inter-National Research Institute, Wizard Toolkit, Application
Programmer's Interface, Unified Build 2.0, April 1992.

[LEWIS 92] Lewis, J. A. et al, "On the Relationship Between the Object-Oriented
Paradigm and Software Reuse: An Empirical Investigation", Journal of
Object-Oriented Programming, pp.35-4 1, July/August 1992.

[MEYER 88] Meyer, B., Object-Oriented Software ConLtruction, Prentice Hall, 1988.

[NASA 91a] NASA Goddard Space Flight Center, TAE Plus Overview Vi./, April 1991.

238

[NASA 92a] NASA Goddard Space Flight Center, Programming Tips and Tricks V5.1,
1992.

[NASA 92b] NASA Goddard Space Flight Center, TAE Plus User Interface Developer's
Guide V5.2 Beta, October 1992.

[PERRY 92] Perry, G., Moving from C to C++, SAMS Publishing, 1992.

[SCHRADY 90] Schrady, D. A., Wadsworth, D. B., Laverty, R. G., Bednarski, W. S.,
Predicting Ship Fuel Consumption, Technical Report NPSOR-91-03, Naval
Postgraduate School, Monterey, California, October 1990.

[SCHRADY 91] Schrady, D. A., Wadsworth, D. B., User's Guide for the Battle Group
Logistics Coordinator Support System (BGLCSS), Technical Report
NPSOR-91-08, Naval Postgraduate School, Monterey, California, February
1991.

[SETHI 90] Sethi, R., Programming Languages.' Concepts and Constructs, Addison-
Wesley Publishing Company, 1990.

[SHIFFMAN 92]Shiffman, H., "Toward a Less Object-Oriented View of C++",
Supplement to Dr. Dobb's Journal, pp. 35-38, December 1992.

2)

239

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexanderia, VA 22304-6145 6

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. C. Thomas Wu
Code CS/Wq
Associate Professor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

5. Roger Stemp
Code CS/Sp
Adjunct Instructor, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. LCDR Donald P. Brutzman
Code OR/Br
Adjunct Professor, Operations Research Department
Naval Postgraduate School
Monterey, CA 93943-5000

7. Commander, Space and Navy Warfare Systems Command
Don Wayburn, PD-60-LI
Washington, D.C. 20363

8. Bernadette C. Brooks 6
P.O. Box 48
Kensington, MD 20895

240

